#include "robot.h" #include "board.h" #include "usart_transport.h" #include "simple_dataframe_slave.h" #include "data_holder.h" #include "usart.h" #if MOTOR_CONTROLLER == COMMON_CONTROLLER #include "common_motor_controller.h" #define MAX_PWM_VALUE 5000 #elif MOTOR_CONTROLLER == AF_SHIELD_CONTROLLER #include "afs_motor_controller.h" #define MAX_PWM_VALUE 255 #endif #include "encoder_implement.h" #include "pid.h" #include "board_stm32.h" #if IMU_ENABLE #include "GY65.h" #include "GY85.h" #include "GY87.h" #endif #if JOYSTICK_ENABLE #include "joystick.h" #endif #include "print.h" #define min(a, b) ((a) < (b) ? (a) : (b)) #define max(a, b) ((a) > (b) ? (a) : (b)) Robot::Robot() { for (int i = 0; i < MOTOR_COUNT; i++) { motor[i] = NULL; encoder[i] = NULL; pid[i] = NULL; input[i] = 0.0f; feedback[i] = 0.0f; } trans = NULL; frame = NULL; model = NULL; do_kinmatics_flag = false; last_velocity_command_time = 0; do_set_pwm_flag = false; #if IMU_ENABLE imu = NULL; #endif #if JOYSTICK_ENABLE joystick = NULL; #endif } void Robot::Init() { // board初始化 Board::get()->init(); #if DEBUG_ENABLE // 调试串口初始化 Board::get()->Usart_DebugInit(); #endif // 加载参数, 该参数一般存储在flash或者eeprom DataHolder::get()->loadParameter(); log("RobotParameters: %d %d %d %d %d %d %d %d %d %d %d %d %d", DataHolder::get()->parameter.params.wheel_diameter, DataHolder::get()->parameter.params.wheel_track, DataHolder::get()->parameter.params.encoder_resolution, DataHolder::get()->parameter.params.motor_ratio, DataHolder::get()->parameter.params.do_pid_interval, DataHolder::get()->parameter.params.kp, DataHolder::get()->parameter.params.ki, DataHolder::get()->parameter.params.kd, DataHolder::get()->parameter.params.ko, DataHolder::get()->parameter.params.cmd_last_time, DataHolder::get()->parameter.params.max_v_liner_x, DataHolder::get()->parameter.params.max_v_liner_y, DataHolder::get()->parameter.params.max_v_angular_z); #if IMU_ENABLE // imu 初始化 init_imu(); #endif log("init_motor"); // 电机相关初始化 InitMotor(); log("init_trans"); // 通讯相关初始化 InitTrans(); // joystick初始化 InitJoystick(); log("gebot init finish."); } void Robot::init_imu() { #if IMU_ENABLE if (DataHolder::get()->parameter.params.imu_type == IMU_TYPE_GY65) { log("imu gy65"); static GY65 gy65; imu = &gy65; } else if (DataHolder::get()->parameter.params.imu_type == IMU_TYPE_GY85) { log("imu gy85"); static GY85 gy85; imu = &gy85; } else if (DataHolder::get()->parameter.params.imu_type == IMU_TYPE_GY87) { log("imu gy87"); static GY87 gy87; imu = &gy87; } else { log("imu default null driver"); imu = NULL; } if (imu != NULL) { imu->Init(); } #endif } void Robot::InitJoystick() { #if JOYSTICK_ENABLE static Joystick joy; joystick = &joy; if (joystick) joystick->init(); #endif } void Robot::InitMotor() { // MOTOR_COUNT为电机数量 该宏定义在相应的机器人模型文件中, KinematicModels/differential.h #if MOTOR_COUNT > 0 // 电机1 // MOTOR_CONTROLLER在params.mk中定义 表示电机控制器类型 // 当前使用的COMMON_CONTROLLER为2个io控制方向一个PWD控制速度类型的控制器 #if MOTOR_CONTROLLER == COMMON_CONTROLLER static CommonMotorController motor1(MOTOR_1, MAX_PWM_VALUE, (DataHolder::get()->parameter.params.motor_nonexchange_flag & MOTOR_ENCODER_1_FLAG) == 0); // MOTOR1_REVERS标识电机方向反向,等同于电机线交换 #elif MOTOR_CONTROLLER == AF_SHIELD_CONTROLLER static AFSMotorController motor1(MOTOR_1_PORT_NUM, MAX_PWM_VALUE); #endif // 定义使用的编码器 传入参数为编码器的AB GPIO引脚 定义在params.mk中 static EncoderImp encoder1(MOTOR_1, (DataHolder::get()->parameter.params.encoder_nonexchange_flag & MOTOR_ENCODER_1_FLAG) == 0); // 定义PID控制对象 传入参数为输入和输出的地址及kp ki kd 这里ko为比例 static PID pid1(&input[0], &feedback[0], float(DataHolder::get()->parameter.params.kp) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.ki) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.kd) / DataHolder::get()->parameter.params.ko, MAX_PWM_VALUE); #endif #if MOTOR_COUNT > 1 // 电机2 #if MOTOR_CONTROLLER == COMMON_CONTROLLER static CommonMotorController motor2(MOTOR_2, MAX_PWM_VALUE, (DataHolder::get()->parameter.params.motor_nonexchange_flag & MOTOR_ENCODER_2_FLAG) == 0); // MOTOR1_REVERS标识电机方向反向,等同于电机线交换 #elif MOTOR_CONTROLLER == AF_SHIELD_CONTROLLER static AFSMotorController motor2(MOTOR_2_PORT_NUM, MAX_PWM_VALUE); #endif static EncoderImp encoder2(MOTOR_2, (DataHolder::get()->parameter.params.encoder_nonexchange_flag & MOTOR_ENCODER_2_FLAG) == 0); static PID pid2(&input[1], &feedback[1], float(DataHolder::get()->parameter.params.kp) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.ki) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.kd) / DataHolder::get()->parameter.params.ko, MAX_PWM_VALUE); #endif #if MOTOR_COUNT > 2 // 电机3 #if MOTOR_CONTROLLER == COMMON_CONTROLLER static CommonMotorController motor3(MOTOR_3, MAX_PWM_VALUE, (DataHolder::get()->parameter.params.motor_nonexchange_flag & MOTOR_ENCODER_3_FLAG) == 0); // MOTOR1_REVERS标识电机方向反向,等同于电机线交换 #elif MOTOR_CONTROLLER == AF_SHIELD_CONTROLLER static AFSMotorController motor3(MOTOR_3); #endif static EncoderImp encoder3(MOTOR_3, (DataHolder::get()->parameter.params.encoder_nonexchange_flag & MOTOR_ENCODER_3_FLAG) == 0); static PID pid3(&input[2], &feedback[2], float(DataHolder::get()->parameter.params.kp) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.ki) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.kd) / DataHolder::get()->parameter.params.ko, MAX_PWM_VALUE); #endif // 分别把地址保存在统一的数组内, 方便处理 #if MOTOR_COUNT > 0 motor[0] = &motor1; encoder[0] = &encoder1; pid[0] = &pid1; #endif #if MOTOR_COUNT > 1 motor[1] = &motor2; encoder[1] = &encoder2; pid[1] = &pid2; #endif #if MOTOR_COUNT > 2 motor[2] = &motor3; encoder[2] = &encoder3; pid[2] = &pid3; #endif // 根据定义的模型参数ROBOT_MODEL, 创建模型对象及保存地址 #if ROBOT_MODEL == MODEL_TYPE_2WD_DIFF // 2轮差分 static Differential diff(DataHolder::get()->parameter.params.wheel_diameter * 0.0005, DataHolder::get()->parameter.params.wheel_track * 0.0005); model = &diff; #endif #if ROBOT_MODEL == MODEL_TYPE_3WD_OMNI // 三轮全向 static Omni3 omni3(DataHolder::get()->parameter.params.wheel_diameter * 0.0005, DataHolder::get()->parameter.params.wheel_track * 0.0005); model = &omni3; #endif // 分别初始化各个控制器 for (int i = 0; i < MOTOR_COUNT; i++) { encoder[i]->init(); motor[i]->init(); } // 初始化各个变量 do_kinmatics_flag = false; memset(&odom, 0, sizeof(odom)); memset(&input, 0, sizeof(input)); memset(&feedback, 0, sizeof(feedback)); last_velocity_command_time = 0; } void Robot::InitTrans() { // 定义一个串口通讯对象 !!!注意这里USART_transport继承实现Transport接口, // 实现了一个通讯对象,这么做的原因是,如果我换为其他通讯方式,例如USB,只需要创建一个USB_Transport继承实现实现Transport接口就可以实现 static USART_transport _trans(MASTER_USART, 115200); // 定义一个通讯协议处理对象, 同上, 我们需要更换协议只需要继承实现Dataframe的接口就可以实现 static SimpleDataFrame _frame(&_trans); // 保存对象指针 trans = &_trans; frame = &_frame; // 初始化 trans->init(); frame->init(); // 注册消息处理对象 !!! 这里把各个消息id的处理注册了一个观察者, 即再收到相应的消息后会回调update函数 // Robot(this)继承实现了notify frame->RegisterNotify(ID_SET_ROBOT_PARAMTER, this); frame->RegisterNotify(ID_CLEAR_ODOM, this); frame->RegisterNotify(ID_SET_VELOCITY, this); frame->RegisterNotify(ID_GET_ENCODER_COUNT, this); frame->RegisterNotify(ID_SET_MOTOR_PWM, this); } void Robot::CheckCommand() { static unsigned long lastMillis = 0; if (Board::get()->getTickCount() - lastMillis >= 50) { lastMillis = Board::get()->getTickCount(); Board::get()->setDOState(_RUN_LED, 2); } uint8_t ch = 0; // 从通讯设备(trans)读取数据交给协议处理模块(frame)处理 if (trans->read(ch)) { if (frame->dataRecv(ch)) { // 这里检测到正确的一帧命令,做解析 frame->dataParse(); } } } // 实现Notify接口, 上面注册的命令id接收到时候,会回调,执行响应的动作 void Robot::update(const MESSAGE_ID id, void *data) { switch (id) { case ID_SET_ROBOT_PARAMTER: // 设置参数的回调, 这里会更新pid的参数, model的参数, 最终保存到flash log("RobotParameters: %d %d %d %d %d %d %d %d %d %d %d %d %d", DataHolder::get()->parameter.params.wheel_diameter, DataHolder::get()->parameter.params.wheel_track, DataHolder::get()->parameter.params.encoder_resolution, DataHolder::get()->parameter.params.motor_ratio, DataHolder::get()->parameter.params.do_pid_interval, DataHolder::get()->parameter.params.kp, DataHolder::get()->parameter.params.ki, DataHolder::get()->parameter.params.kd, DataHolder::get()->parameter.params.ko, DataHolder::get()->parameter.params.cmd_last_time, DataHolder::get()->parameter.params.max_v_liner_x, DataHolder::get()->parameter.params.max_v_liner_y, DataHolder::get()->parameter.params.max_v_angular_z); // 更新pid参数, 这样可以保证设置参数实时生效 for (int i = 0; i < MOTOR_COUNT; i++) { pid[i]->Update(float(DataHolder::get()->parameter.params.kp) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.ki) / DataHolder::get()->parameter.params.ko, float(DataHolder::get()->parameter.params.kd) / DataHolder::get()->parameter.params.ko, MAX_PWM_VALUE); } // 更新模型参数, 这样可以保证设置参数实时生效 model->set(DataHolder::get()->parameter.params.wheel_diameter * 0.0005, DataHolder::get()->parameter.params.wheel_track * 0.0005); // 保存参数到flash DataHolder::get()->save_parameter(); break; case ID_CLEAR_ODOM: // 清除里程计信息 clear_odom(); break; case ID_SET_VELOCITY: // 设置机器人的速度 updateVelocity(); // 更新机器人的期望速度 break; case ID_GET_ENCODER_COUNT: update_encoder_count(); // 更新encoder count break; case ID_SET_MOTOR_PWM: update_pwm_value(); // 设置pwm值 break; default: break; } } // 清除里程计数据及相关变量 void Robot::clear_odom() { for (int i = 0; i < MOTOR_COUNT; i++) { encoder[i]->clear(); } memset(&odom, 0, sizeof(odom)); memset(&DataHolder::get()->odom, 0, sizeof(DataHolder::get()->odom)); } #define __PI 3.1415926535897932384626433832795 // 根据下发的速度更新期望速度, 并转为pid时间间隔内的期望编码器的变化值 void Robot::updateVelocity() { // 下发速度检测 保证限制在设置的最大最小值内 short vx = min(max(DataHolder::get()->velocity.v_liner_x, -(short(DataHolder::get()->parameter.params.max_v_liner_x))), short(DataHolder::get()->parameter.params.max_v_liner_x)); short vy = min(max(DataHolder::get()->velocity.v_liner_y, -(short(DataHolder::get()->parameter.params.max_v_liner_y))), short(DataHolder::get()->parameter.params.max_v_liner_y)); short vz = min(max(DataHolder::get()->velocity.v_angular_z, -(short(DataHolder::get()->parameter.params.max_v_angular_z))), short(DataHolder::get()->parameter.params.max_v_angular_z)); // 保存速度转换单位,传入的速度值为cm/s 0.01rad/s 转为m/s 和rad/s float vel[3] = {vx / 100.0, vy / 100.0, vz / 100.0}; float motor_speed[MOTOR_COUNT] = {0}; model->motionSolver(vel, motor_speed); // 期望的机器人的速度转换为各个电机的速度(通过设置的机器人模型接口) // 把得到的期望电机速度 (m/s)转换为期望pid时间间隔内编码器反馈的输入 // 该值即为PID的输入 for (int i = 0; i < MOTOR_COUNT; i++) { input[i] = motor_speed[i] * short(DataHolder::get()->parameter.params.encoder_resolution) * short(DataHolder::get()->parameter.params.motor_ratio) / (2 * __PI) * short(DataHolder::get()->parameter.params.do_pid_interval) * 0.001; } // log("vx=%d %d motor_speed=%ld %ld", vx, vz, long(motor_speed[0]*1000), long(motor_speed[1]*1000)); // 保存时间戳 last_velocity_command_time = Board::get()->getTickCount(); // 更新变量, 激活pid运算和控制电机 do_kinmatics_flag = true; } void Robot::update_encoder_count() { for (int i = 0; i < MOTOR_COUNT; i++) { DataHolder::get()->encoder_count[i] = encoder[i]->get_total_count(); // 输出累计编码器值 用于调试 } } void Robot::update_pwm_value() { do_set_pwm_flag = true; } // pid运算, 控制电机 void Robot::DoKinmatics() { if (do_set_pwm_flag) { do_set_pwm_flag = false; for (int i = 0; i < MOTOR_COUNT; i++) { motor[i]->control(DataHolder::get()->pwm.value[i]); } } if (!do_kinmatics_flag) { // 停止后 for (int i = 0; i < MOTOR_COUNT; i++) { // 清除pid pid[i]->Clear(); // 实时更新用于pid的encoder值 encoder[i]->get_increment_count_for_dopid(); } return; // do_kinmatics_flag false表示电机停止 不需要做pid 故返回 } static unsigned long last_millis = 0; // 判断时间间隔做pid运算 if (Board::get()->getTickCount() - last_millis >= DataHolder::get()->parameter.params.do_pid_interval) { last_millis = Board::get()->getTickCount(); // 得到编码器的反馈差值, 即在do_pid_interval这段间隔时间内编码器的差值, 该值作为pid的反馈 for (int i = 0; i < MOTOR_COUNT; i++) { feedback[i] = encoder[i]->get_increment_count_for_dopid(); } #if PID_DEBUG_OUTPUT #if MOTOR_COUNT == 2 log("input=%ld %ld feedback=%ld %ld", long(input[0] * 1000), long(input[1] * 1000), long(feedback[0]), long(feedback[1])); #endif #if MOTOR_COUNT == 3 log("input=%ld %ld %ld feedback=%ld %ld %ld", long(input[0] * 1000), long(input[1] * 1000), long(input[2] * 1000), long(feedback[0]), long(feedback[1]), long(feedback[2])); #endif #if MOTOR_COUNT == 4 log("input=%ld %ld %ld %ld feedback=%ld %ld %ld %ld", long(input[0] * 1000), long(input[1] * 1000), long(input[2] * 1000), long(input[3] * 1000), long(feedback[0]), long(feedback[1]), long(feedback[2]), long(feedback[3])); #endif #endif bool stoped = true; // 当期望和反馈都为0 置位stoped标志 for (int i = 0; i < MOTOR_COUNT; i++) { if (input[i] != 0 || feedback[i] != 0) { stoped = false; break; } } short output[MOTOR_COUNT] = {0}; if (stoped) { do_kinmatics_flag = false; } else { // 没有需要停止则做pid运算,得到out值,该值作为电机模块控制器输入 for (int i = 0; i < MOTOR_COUNT; i++) { output[i] = pid[i]->Compute(DataHolder::get()->parameter.params.do_pid_interval * 0.001); } } // 当次计算完成 重置变量 for (int i = 0; i < MOTOR_COUNT; i++) { DataHolder::get()->pid_data.input[i] = int(input[i]); DataHolder::get()->pid_data.output[i] = int(feedback[i]); } #if PID_DEBUG_OUTPUT #if MOTOR_COUNT == 2 log("output=%ld %ld", output[0], output[1]); #endif #if MOTOR_COUNT == 3 log("output=%ld %ld %ld", output[0], output[1], output[2]); #endif #if MOTOR_COUNT == 4 log("output=%ld %ld %ld %ld", output[0], output[1], output[2], output[3]); #endif #endif long elapsed_ms = Board::get()->getTickCount() - last_velocity_command_time; // 判断上次下发的时间戳,如果超时,把各个电机期望的输入置零,pid下次会根据改期望计算pid输出转速,慢慢停止点击 if (elapsed_ms > DataHolder::get()->parameter.params.cmd_last_time) { memset(input, 0, sizeof(input)); if (elapsed_ms > DataHolder::get()->parameter.params.cmd_last_time * 2) { memset(output, 0, sizeof(output)); } } // 把pid得到的值交给电机控制器,该值有符号表示正反转 for (int i = 0; i < MOTOR_COUNT; i++) { motor[i]->control(output[i]); } } } // 计算里程计 void Robot::CalcOdom() { static unsigned long last_millis = 0; // 根据实际间隔计算轮子里程 if (Board::get()->getTickCount() - last_millis >= CALC_ODOM_INTERVAL) { last_millis = Board::get()->getTickCount(); #if ODOM_DEBUG_OUTPUT long total_count[MOTOR_COUNT] = {0}; for (int i = 0; i < MOTOR_COUNT; i++) { total_count[i] = encoder[i]->get_total_count(); // 输出累计编码器值 用于调试 } #if MOTOR_COUNT == 2 log("total_count=[%ld %ld]", total_count[0], total_count[1]); #endif #if MOTOR_COUNT == 3 log("total_count=[%ld %ld %ld]", total_count[0], total_count[1], total_count[2]); #endif #if MOTOR_COUNT == 4 log("total_count=[%ld %ld %ld %ld]", total_count[0], total_count[1], total_count[2], total_count[3]); #endif #endif float dis[MOTOR_COUNT] = {0}; for (int i = 0; i < MOTOR_COUNT; i++) { // 根据CALC_ODOM_INTERVAL的间隔内的各个电机的编码器变化值,转换各个电机实际的里程 dis[i] = encoder[i]->get_increment_count_for_odom() * __PI * DataHolder::get()->parameter.params.wheel_diameter * 0.001 / DataHolder::get()->parameter.params.encoder_resolution / DataHolder::get()->parameter.params.motor_ratio; #if ODOM_DEBUG_OUTPUT log(" %ld ", long(dis[i] * 1000000)); #endif } // 把计算得到的各个电机的里程转为为机器人里程(通过机器人运动模型对象) model->get_odom(&odom, dis, CALC_ODOM_INTERVAL); #if ODOM_DEBUG_OUTPUT // 输出机器人的里程 log(" x=%ld y=%ld yaw=%ld", long(odom.x * 1000), long(odom.y * 1000), long(odom.z * 1000)); // mm log(""); #endif // 转换单位保存到DataHolder DataHolder::get()->odom.v_liner_x = odom.vel_x * 100; // 转为cm/s DataHolder::get()->odom.v_liner_y = odom.vel_y * 100; DataHolder::get()->odom.v_angular_z = odom.vel_z * 100; DataHolder::get()->odom.x = odom.x * 100; // 转为cm DataHolder::get()->odom.y = odom.y * 100; DataHolder::get()->odom.yaw = long(odom.z * 100) % 628; // 转为0.01rad 628为2pi*100 } } // 获取imu数据 void Robot::GetImuData() { #if IMU_ENABLE if (imu == NULL) { return; } static unsigned long last_millis = 0; // 按照设置的时间间隔获取imu数据 if (Board::get()->getTickCount() - last_millis >= CALC_IMU_INTERVAL) { last_millis = Board::get()->getTickCount(); imu->GetData(DataHolder::get()->imu_data); } #endif } // 检测joystick void Robot::CheckJoystick() { #if JOYSTICK_ENABLE if (joystick == NULL) { return; } static unsigned long last_millis = 0; short liner_x = 0, liner_y = 0, angular_z = 0; if (Board::get()->getTickCount() - last_millis >= CHECK_JOYSTICK_INTERVAL) { last_millis = Board::get()->getTickCount(); // 按照设置的间隔间隔 更新期望速度 if (joystick->check(liner_x, liner_y, angular_z)) { DataHolder::get()->velocity.v_liner_x = liner_x; DataHolder::get()->velocity.v_liner_y = liner_y; DataHolder::get()->velocity.v_angular_z = angular_z; update_velocity(); } joystick->test(); } #endif }