17.move_base/+44 (5) .md

¢ 1.inflation
o ¥ 15.move_base/M4H (3) MBI

pluginZ:#§

1.inflation

A MZH e T H

10/20/2018

il

e NEITHA

I range of costs meaning
definitely in collision

range of costs meaning
possibly in collision
{depends on orientation}

cell :ost“
[int]
“lethal" or "W-space" cbstacle
e.g. cost_lethal=254
"inscribed” or "C-space" obstacle
.9, cost_inscribed=253 9352
“circumscribed” obstacle
e.g. cost_possibly_circumscribed=128
a.12

dissretived cost desay function

range of costs meaning
definitely not in collision

also the range where (most) user

be axprassed

lowest non-freespace naminal cost decay functien I preferences should
cost=1 I
freespace |
cost=0 . E
inseribed circumseribed inflation : distance from
radius radius radius closest W-space
\ H obstacle cell

BN

canter
call

inseribad region

ireumszribed regins

o LIt ubLAs MR
o PRREE R ROy N D[
o HMIIE R BRI A A B

namespace costmap_2d

[double]

o
buffer zone created by costmap_2d around
abstacles, in order to make the robot prefer
paths that keep some minimum clearance
(this Is a sort of default user preference)

|— eaact inan-pixelized) fontprint

{

static const unsigned char NO_INFORMATION = 255;

static const unsigned char LETHAL_OBSTACLE = 254;

static const unsigned char INSCRIBED_INFLATED_OBSTACLE = 253;
static const unsigned char FREE_SPACE = 0;

1
AR [{EM0~255

. YRS SN S

I
=

i

HE TR
. ARSI S LA N A DT
. L A SIS LS NSRS,

[FIREH E B R
A RE P EUF R (WL NS HR5E),
GEES

. DRAAEATRERS, Hlas A AT LA R R

1/2

HARH


http://blog.csdn.net/baimei4833953/article/details/79163502

17.move_base/+44 (5) .md 10/20/2018

. B SIS N
b PR AR v B 21 E TR D P AR VR PR 2 B G O BE B S cost_value ISR &, THEITNE AR IR

inline unsigned char CDmpUtECDSt{d@uble distance) const
{

unsigned char cost = 0;

if (distance == @)
cost = LETHAL_OBSTACLE;

else if (distance * resolution_ <= inscribed_radius_)
cost = INSCRIBED_INFIATED OBSTACLE;

else

// make sure cost falls off by Euclidean distance
double eudidean_distance = distance * resolution_;
double factor = exp(-1.0 * weight_ * (euclidean_distance - inscribed_radius_));

cost = (unsigned char)((INSCRIBED_INFIATED _OBSTACLE - 1) * factor);

return cost;]

inflation_layer:
cost_scaling factor: 2.5 # exponential rate at which the obstacle cost drops

off (default: 10)
inflation_radius: 1.2 # max. distance from an obstacle at which costs are

incurred for planning paths.

o SNOR R 25 e i ) i
o TEPR R, ok b T AR Eh R R
< o
? : 1
%
. KK
o HK

2/2



