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{depends on orientation}
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“lethal" or "W-space" cbstacle
e.g. cost_lethal=254
"inscribed” or "C-space" obstacle
.9, cost_inscribed=253 9352
“circumscribed” obstacle
e.g. cost_possibly_circumscribed=128
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namespace costmap_2d

[double]

o
buffer zone created by costmap_2d around
abstacles, in order to make the robot prefer
paths that keep some minimum clearance
(this Is a sort of default user preference)
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static const unsigned char NO_INFORMATION = 255;

static const unsigned char LETHAL_OBSTACLE = 254;

static const unsigned char INSCRIBED_INFLATED_OBSTACLE = 253;
static const unsigned char FREE_SPACE = 0;
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inline unsigned char CDmpUtECDSt{d@uble distance) const
{

unsigned char cost = 0;

if (distance == @)
cost = LETHAL_OBSTACLE;

else if (distance * resolution_ <= inscribed_radius_)
cost = INSCRIBED_INFIATED OBSTACLE;

else

// make sure cost falls off by Euclidean distance
double eudidean_distance = distance * resolution_;
double factor = exp(-1.0 * weight_ * (euclidean_distance - inscribed_radius_));

cost = (unsigned char)((INSCRIBED_INFIATED _OBSTACLE - 1) * factor);

return cost;]

inflation_layer:
cost_scaling factor: 2.5 # exponential rate at which the obstacle cost drops

off (default: 10)
inflation_radius: 1.2 # max. distance from an obstacle at which costs are

incurred for planning paths.
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