diff --git a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/include/detection.h b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/include/detection.h index b5ebc57..e8acb9d 100644 --- a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/include/detection.h +++ b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/include/detection.h @@ -30,8 +30,8 @@ private: rknn_input_output_num io_num; int channel = 3; - int width = 0; - int height = 0; + int width = 0; + int height = 0; rknn_input inputs[1]; diff --git a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/detection.cc b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/detection.cc index 3b6816e..d58a851 100644 --- a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/detection.cc +++ b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/detection.cc @@ -4,59 +4,58 @@ unsigned char * Detection::load_data(FILE *fp, size_t ofst, size_t sz) { - unsigned char *data; - int ret; + unsigned char *data; + int ret; - data = NULL; + data = NULL; - if (NULL == fp) - { - return NULL; - } + if (NULL == fp) + { + return NULL; + } - ret = fseek(fp, ofst, SEEK_SET); - if (ret != 0) - { - printf("blob seek failure.\n"); - return NULL; - } + ret = fseek(fp, ofst, SEEK_SET); + if (ret != 0) + { + printf("blob seek failure.\n"); + return NULL; + } - data = (unsigned char *)malloc(sz); - if (data == NULL) - { - printf("buffer malloc failure.\n"); - return NULL; - } - ret = fread(data, 1, sz, fp); - return data; + data = (unsigned char *)malloc(sz); + if (data == NULL) + { + printf("buffer malloc failure.\n"); + return NULL; + } + ret = fread(data, 1, sz, fp); + return data; } unsigned char * Detection::load_model(const char *filename, int *model_size) { - FILE *fp; - unsigned char *data; + FILE *fp; + unsigned char *data; - fp = fopen(filename, "rb"); - if (NULL == fp) - { - printf("Open file %s failed.\n", filename); - return NULL; - } + fp = fopen(filename, "rb"); + if (NULL == fp) + { + printf("Open file %s failed.\n", filename); + return NULL; + } - fseek(fp, 0, SEEK_END); - int size = ftell(fp); + fseek(fp, 0, SEEK_END); + int size = ftell(fp); - data = load_data(fp, 0, size); + data = load_data(fp, 0, size); - fclose(fp); + fclose(fp); - *model_size = size; - return data; + *model_size = size; + return data; } Detection::Detection() { - /* Create the neural network */ printf("Loading mode...\n"); int model_data_size = 0; @@ -64,21 +63,21 @@ Detection::Detection() ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL); if (ret < 0) { - printf("rknn_init error ret=%d\n", ret); + printf("rknn_init error ret=%d\n", ret); } rknn_sdk_version version; ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version)); if (ret < 0) { - printf("rknn_init error ret=%d\n", ret); + printf("rknn_init error ret=%d\n", ret); } printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version); ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret < 0) { - printf("rknn_init error ret=%d\n", ret); + printf("rknn_init error ret=%d\n", ret); } printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); @@ -86,12 +85,12 @@ Detection::Detection() memset(input_attrs, 0, sizeof(input_attrs)); for (int i = 0; i < io_num.n_input; i++) { - input_attrs[i].index = i; - ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); - if (ret < 0) - { - printf("rknn_init error ret=%d\n", ret); - } + input_attrs[i].index = i; + ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); + if (ret < 0) + { + printf("rknn_init error ret=%d\n", ret); + } // dump_tensor_attr(&(input_attrs[i])); } @@ -99,35 +98,34 @@ Detection::Detection() memset(output_attrs, 0, sizeof(output_attrs)); for (int i = 0; i < io_num.n_output; i++) { - output_attrs[i].index = i; - ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); + output_attrs[i].index = i; + ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); // dump_tensor_attr(&(output_attrs[i])); } for (int i = 0; i < io_num.n_output; ++i) { - out_scales.push_back(output_attrs[i].scale); - out_zps.push_back(output_attrs[i].zp); + out_scales.push_back(output_attrs[i].scale); + out_zps.push_back(output_attrs[i].zp); } if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) { - printf("model is NCHW input fmt\n"); - channel = input_attrs[0].dims[1]; - height = input_attrs[0].dims[2]; - width = input_attrs[0].dims[3]; + printf("model is NCHW input fmt\n"); + channel = input_attrs[0].dims[1]; + height = input_attrs[0].dims[2]; + width = input_attrs[0].dims[3]; } else { - printf("model is NHWC input fmt\n"); - height = input_attrs[0].dims[1]; - width = input_attrs[0].dims[2]; - channel = input_attrs[0].dims[3]; + printf("model is NHWC input fmt\n"); + height = input_attrs[0].dims[1]; + width = input_attrs[0].dims[2]; + channel = input_attrs[0].dims[3]; } printf("model input height=%d, width=%d, channel=%d\n", height, width, channel); - memset(inputs, 0, sizeof(inputs)); inputs[0].index = 0; inputs[0].type = RKNN_TENSOR_UINT8; @@ -135,8 +133,9 @@ Detection::Detection() inputs[0].fmt = RKNN_TENSOR_NHWC; inputs[0].pass_through = 0; - } +} +// 这个地方采用直接传值,会影响性能 detect_result_group_t Detection::outputParse(cv::Mat netInputImg) { @@ -144,7 +143,7 @@ detect_result_group_t Detection::outputParse(cv::Mat netInputImg) if (!orig_img.data) { - printf("no image\n"); + printf("no image\n"); } cv::Mat img; cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB); @@ -157,24 +156,25 @@ detect_result_group_t Detection::outputParse(cv::Mat netInputImg) memset(&pads, 0, sizeof(BOX_RECT)); cv::Size target_size(width, height); cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3); - // 计算缩放比例 + + // 需要将输入图像分辨率转换到检测模型指定的分辨率 float scale_w = (float)target_size.width / img.cols; float scale_h = (float)target_size.height / img.rows; if (img_width != width || img_height != height) { - // printf("resize image with letterbox\n"); - float min_scale = std::min(scale_w, scale_h); - scale_w = min_scale; - scale_h = min_scale; - letterbox(img, resized_img, pads, min_scale, target_size); - // 保存预处理图片 - // cv::imwrite("letterbox_input.jpg", resized_img); - inputs[0].buf = resized_img.data; + // printf("resize image with letterbox\n"); + float min_scale = std::min(scale_w, scale_h); + scale_w = min_scale; + scale_h = min_scale; + letterbox(img, resized_img, pads, min_scale, target_size); + // 保存预处理图片 + // cv::imwrite("letterbox_input.jpg", resized_img); + inputs[0].buf = resized_img.data; } else { - inputs[0].buf = img.data; + inputs[0].buf = img.data; } rknn_inputs_set(ctx, io_num.n_input, inputs); @@ -183,7 +183,7 @@ detect_result_group_t Detection::outputParse(cv::Mat netInputImg) memset(outputs, 0, sizeof(outputs)); for (int i = 0; i < io_num.n_output; i++) { - outputs[i].want_float = 0; + outputs[i].want_float = 0; } // 执行推理 diff --git a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/main.cpp b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/main.cpp index e9de129..1ccf57e 100644 --- a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/main.cpp +++ b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/main.cpp @@ -39,7 +39,6 @@ void *ranging(void *args) // ranging线程 int main(int argc, char **argv) { - pthread_t tids[1]; // 执行ranging线程 int ret = pthread_create(&tids[0], NULL, ranging, NULL); diff --git a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/ranging.cpp b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/ranging.cpp index 0cc10e9..b17b6c8 100644 --- a/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/ranging.cpp +++ b/Code/RK3588/stereo_yolo/rknpu2/examples/rknn_yolov5_demo/src/ranging.cpp @@ -1,17 +1,18 @@ -#include -#include #include #include #include "ranging.h" #include #include - #include #include #include + +// OpenCV相关 #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" +#include +#include #include #include @@ -19,19 +20,22 @@ #include #include #include -#include #include + + +// 上面重复无用的头文件应该删除 // #include - - using namespace cv; -void Ranging::rectifyImage(Mat &oriImgL, Mat &oriImgR) //重映射函数 + +// 重映射函数 +void Ranging::rectifyImage(Mat &oriImgL, Mat &oriImgR) { remap(oriImgL, oriImgL, mapX1, mapX2, cv::INTER_LINEAR); remap(oriImgR, oriImgR, mapY1, mapY2, cv::INTER_LINEAR); } -std::vector Ranging::pic2cam(int u, int v) //像素坐标转相机坐标 +// 像素坐标转相机坐标 +std::vector Ranging::pic2cam(int u, int v) { //(u,v)->(x,y)"(loc[0],loc[1])" std::vector loc; @@ -40,35 +44,46 @@ std::vector Ranging::pic2cam(int u, int v) //像素坐标转相机坐标 return loc; } -std::vector Ranging::muban(Mat &left_image, Mat &right_image, const int *coordinates) //模板匹配 +// 模板匹配 +std::vector Ranging::muban(Mat &left_image, Mat &right_image, const int *coordinates) { int x1 = coordinates[0], y1 = coordinates[1], x2 = coordinates[2], y2 = coordinates[3]; - Mat tpl = right_image.rowRange(max(y1 - 2, 0), min(y2 + 2, 479)).colRange(x1, x2); //获取目标框 - Mat target = left_image.rowRange(max(y1 - 20, 0), min(y2 + 20, 479)).colRange(0, 639); //待匹配图像,极线约束,只需要同水平区域 + // 获取目标框 + Mat tpl = right_image.rowRange(max(y1 - 2, 0), min(y2 + 2, 479)).colRange(x1, x2); + // 待匹配图像,极线约束,只需要同水平区域 + Mat target = left_image.rowRange(max(y1 - 20, 0), min(y2 + 20, 479)).colRange(0, 639); int th = tpl.rows, tw = tpl.cols; Mat result; - matchTemplate(target, tpl, result, TM_CCOEFF_NORMED); //匹配方法:归一化相关系数即零均值归一化互相关 + // 匹配方法:归一化相关系数即零均值归一化互相关 + matchTemplate(target, tpl, result, TM_CCOEFF_NORMED); double minVal, maxVal; Point minLoc, maxLoc; - minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc); //得到匹配点坐标 + // 得到匹配点坐标 + minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc); Point tl = maxLoc, br; + // 这个地方应该修改为宏 + // 转为像素坐标系 640 - 1 + br.x = min(maxLoc.x + tw, 639); + // 转为像素坐标系 480 - 1 + br.y = min(maxLoc.y + th, 479); - br.x = min(maxLoc.x + tw, 639); //转为像素坐标系 - br.y = min(maxLoc.y + th, 479); //转为像素坐标系 - ////展示匹配结果 - // br.x = min(maxLoc.x + tw, 319); - // br.y = min(maxLoc.y + th, 239); - //rectangle(target, tl, br, (0, 255, 0), 3); - //imshow("match-", target); - //waitKey(2); - + /* + // 展示匹配结果 + br.x = min(maxLoc.x + tw, 319); + br.y = min(maxLoc.y + th, 239); + rectangle(target, tl, br, (0, 255, 0), 3); + imshow("match-", target); + waitKey(2); + */ + std::vector maxloc; maxloc.push_back(maxLoc.x); maxloc.push_back(maxLoc.y); return maxloc; } +// 这个函数暂时不知道作用 void Ranging::horizon_estimate(Mat& img, Mat& bboxs,int k) { //保证摄像头与地面平行 @@ -138,49 +153,70 @@ void Ranging::getInfo(Mat &imgL, Mat &imgR, Mat &detBoxes, Mat &info) Mat imgGrayL, imgGrayR; cvtColor(imgL, imgGrayL, COLOR_BGR2GRAY); cvtColor(imgR, imgGrayR, COLOR_BGR2GRAY); + // 优化:这个地方的imgR_weight没有起到任何作用 + // 纯粹浪费CPU计算了 Mat imgR_weight = imgR.clone(); Mat infoRow; + for (uchar i = 0; i < detBoxes.rows; i++) { + // 获得位置信息 int x1 = detBoxes.at(i, 0); int y1 = detBoxes.at(i, 1); int x2 = detBoxes.at(i, 2); int y2 = detBoxes.at(i, 3); - + // 获取置信度信息 float Conf = detBoxes.at(i, 4); - int cls = detBoxes.at(i, 5); - - if (x1 > 600 || x2 < 50 || y1 < 5 || y2 > 475 || x1 < 2 || x2 > 590 || abs(x2 - x1) > 550) //当目标框偏左、偏右或者过大,略去该物体 - { + int cls = detBoxes.at(i, 5); + + // 当目标框偏左、偏右或者过大,略去该物体 + if (x1 > 600 || x2 < 50 || y1 < 5 || y2 > 475 || x1 < 2 || x2 > 590 || abs(x2 - x1) > 550) { continue; } - rectangle(imgR, Point(int(x1), int(y1)), - Point(int(x2), int(y2)), Scalar(0, 0, 255)); //绘制目标框 + // 绘制目标框 + rectangle(imgR, Point(int(x1), int(y1)),Point(int(x2), int(y2)), Scalar(0, 0, 255)); + // 检测的是右图,利用模板匹配去找左图的位置 int coordinates[4] = {x1, y1, x2, y2}; - std::vector disp_pixel = muban(imgGrayL, imgGrayR, coordinates); //模板匹配 - float disp_pixel_x = disp_pixel[0] - x1; //ˮ计算水平视差 - float disp_pixel_y = disp_pixel[1] - y1; // - disp_pixel_x = (int)(disp_pixel_x + disp_pixel_x * 0.12); //0.12为模板匹配产生的误差,为经验值,通过拟合得到 + // 模板匹配 + std::vector disp_pixel = muban(imgGrayL, imgGrayR, coordinates); + + // 这里用disp_x 有点奇怪?用dispDiffX + // 计算水平视差 左图匹配的x坐标和右图的x坐标之差 + float disp_pixel_x = disp_pixel[0] - x1; + // 垂直的误差没有起到作用 + float disp_pixel_y = disp_pixel[1] - y1; + // 0.12为模板匹配产生的误差,为经验值,通过拟合得到 + disp_pixel_x = (int)(disp_pixel_x + disp_pixel_x * 0.12); //Mat disp_matrix = Mat(1, 1, CV_32F, Scalar(disp_pixel_x)), disp_pixel_xyz; - Mat disp_matrix = Mat(imgGrayL.rows, imgGrayL.cols, CV_32F, Scalar(disp_pixel_x)); //定义视差矩阵,所有值均为水平视差,方便转换为三维坐标,并具有水平距离信息 + // 定义视差矩阵,所有值均为水平视差,方便转换为三维坐标,并具有水平距离信息 + Mat disp_matrix = Mat(imgGrayL.rows, imgGrayL.cols, CV_32F, Scalar(disp_pixel_x)); Mat threed_pixel_xyz, threedImage; - reprojectImageTo3D(disp_matrix, threedImage, q, false); //2d->3d - threed_pixel_xyz = threedImage.mul(threedImage); //每一像素点求平方, + // 通过quat将显示图像从2d映射到3d + reprojectImageTo3D(disp_matrix, threedImage, q, false); + // 图像的3个通道,每一像素点求平方 + threed_pixel_xyz = threedImage.mul(threedImage); std::vector channels; + // 求平方后的结果,分离为3个通道,然后求和即是欧式距离 split(threed_pixel_xyz.clone(), channels); - threed_pixel_xyz = channels[0] + channels[1] + channels[2]; //计算欧式距离 + + // 计算欧式距离 = r^2 + g^2 + b^2 + threed_pixel_xyz = channels[0] + channels[1] + channels[2]; threed_pixel_xyz.forEach([](float &value, const int *position) { value = sqrt(value); }); // 获得距离d int mid_pixel = int((x1 + x2) / 2); - std::vector mid = pic2cam(imgGrayR.cols / 2, imgGrayR.rows); //计算角度,从像素坐标转为相机坐标 + + // 计算角度,从像素坐标转为相机坐标 + // 这里用结构体比用vector更加节省CPU运算 + std::vector mid = pic2cam(imgGrayR.cols / 2, imgGrayR.rows); std::vector loc_tar = pic2cam(mid_pixel, imgGrayR.rows); float alfa = atan((loc_tar[0] - mid[0]) / q.at(2, 3)); - if (disp_pixel_x > 240) // 距离太近,视差过大 + // 距离太近,视差过大 + if (disp_pixel_x > 240) { char cm[15]; //sprintf(cm, "cannot match !"); @@ -217,29 +253,27 @@ void Ranging::getInfo(Mat &imgL, Mat &imgR, Mat &detBoxes, Mat &info) //sprintf(tf, "Too far!"); char cm[15]; //sprintf(cm, "cannot match !"); - sprintf(cm, "%d , %.2f", cls,Conf); + sprintf(cm, "%d , %.2f", cls, Conf); putText(imgR, cm, Point((x1), (y1)), FONT_HERSHEY_PLAIN, 2.2, Scalar(0, 0, 255), 2); infoRow = (Mat_(1, 4) << -1, -1, -1, -1); infoRow.copyTo(info.row(i)); continue; } - // ��ͼ���ϻ�����Ϣ + // char dc[50], wh[50]; // std::string cname = className[cls + 1]; // sprintf(dc, "dis:%.2fcm %d", median, cls); // sprintf(wh, "W: %.2fcm H: %.2fcm alfa: %2f", w1, h1, alfa); // putText(imgR, dc, Point(x1, y2), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 2); // putText(imgR, wh, Point(x1, y1), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 1.5); - //返回数据 infoRow = (Mat_(1, 4) << median, w1, h1, alfa); infoRow.copyTo(info.row(i)); }; } - // cv::imshow("kk",imgR); - // cv::waitKey(1); - + //cv::imshow("kk",imgR); + //cv::waitKey(1); } Ranging::Ranging(int index, int imgw, int imgh) : //初始化 @@ -252,52 +286,54 @@ Ranging::Ranging(int index, int imgw, int imgh) : //初始化 imgh(imgh) { // Z = Mat::zeros(2, 1, CV_32FC1); - vcapture = cv::VideoCapture(index); - //vcapture.set(CAP_PROP_FOURCC, CAP_OPENCV_MJPEG); - vcapture.set(cv::CAP_PROP_FPS, 30); - vcapture.set(cv::CAP_PROP_FRAME_WIDTH, imgw * 2); - vcapture.set(cv::CAP_PROP_FRAME_HEIGHT, imgh); - vcapture.set(cv::CAP_PROP_BUFFERSIZE, 1); - + vcapture = cv::VideoCapture(index); + //vcapture.set(CAP_PROP_FOURCC, CAP_OPENCV_MJPEG); + vcapture.set(cv::CAP_PROP_FPS, 30); + vcapture.set(cv::CAP_PROP_FRAME_WIDTH, imgw * 2); + vcapture.set(cv::CAP_PROP_FRAME_HEIGHT, imgh); + vcapture.set(cv::CAP_PROP_BUFFERSIZE, 1); + - auto imgSize = Size(imgw, imgh); - Mat r1(3, 3, CV_64F), r2(3, 3, CV_64F), p1(3, 4, CV_64F), p2(3, 4, CV_64F); + auto imgSize = Size(imgw, imgh); + Mat r1(3, 3, CV_64F), r2(3, 3, CV_64F), p1(3, 4, CV_64F), p2(3, 4, CV_64F); - stereoRectify(cam_matrix_left.t(), distortion_l, cam_matrix_right.t(), distortion_r, - imgSize, rotate.t(), trans, r1, r2, p1, p2, q);//立体校正 + stereoRectify(cam_matrix_left.t(), distortion_l, cam_matrix_right.t(), distortion_r, + imgSize, rotate.t(), trans, r1, r2, p1, p2, q);//立体校正 - initUndistortRectifyMap(cam_matrix_left.t(), distortion_l, r1, p1, imgSize, CV_32F, mapX1, mapX2);//计算无畸变和修正转换映射 - initUndistortRectifyMap(cam_matrix_right.t(), distortion_r, r2, p2, imgSize, CV_32F, mapY1, mapY2);//计算无畸变和修正转换映射 + // 计算无畸变和修正转换映射 + initUndistortRectifyMap(cam_matrix_left.t(), distortion_l, r1, p1, imgSize, CV_32F, mapX1, mapX2); + // 计算无畸变和修正转换映射 + initUndistortRectifyMap(cam_matrix_right.t(), distortion_r, r2, p2, imgSize, CV_32F, mapY1, mapY2); - // RKNN_Create(&hdx, modelPath); // 初始化检测模型 + // RKNN_Create(&hdx, modelPath); // 初始化检测模型 std::cout<< " ******************* CAMERA initialization ********************" << std::endl; - } - - std::vector Ranging::get_range() { double rang_old, rang_now; // rang_old = ros::Time::now().toSec(); //测试运行时间 Mat frame, lframe, rframe; - // vcapture.read(frame); //获取视频帧 + // 获取视频帧 vcapture >> frame; - - // cv::imshow("frame",frame); + // 显示原始图像 + //cv::imshow("frame",frame); if (!frame.empty()) { int64 t = getTickCount(); - Mat lframe(frame.colRange(0, imgw).clone()); //拷贝左图 - Mat rframe(frame.colRange(imgw, imgw * 2).clone()); //拷贝右图 + // 拷贝左图 + Mat lframe(frame.colRange(0, imgw).clone()); + // 拷贝右图 + Mat rframe(frame.colRange(imgw, imgw * 2).clone()); - rectifyImage(lframe, rframe); // + rectifyImage(lframe, rframe); + // 这里拷贝一次,然后再yolo里面再拷贝一次,以及函数传参也拷贝了一次? cv::Mat Rframe = rframe.clone(); - + // yolov5s.outputPars修改为detectImage() detect_result_group = yolov5s.outputParse(Rframe); if (detect_result_group.count<=0) @@ -305,13 +341,17 @@ std::vector Ranging::get_range() std::cout<<"detect nothing"<name, det_result->prop * 100); + // printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top, // det_result->box.right, det_result->box.bottom, det_result->prop); @@ -330,51 +370,59 @@ std::vector Ranging::get_range() detBoxes.at(i, 3) = ymax; detBoxes.at(i, 4) = det_result->prop; // 实验测试,过滤过大的误检框 - // float ratio = (xmax - xmin) * (ymax - ymin) / 308480.; - // if (ratio > 0.7) - // { - // detBoxes.at(i, 5) = -1; - // continue; - // } + // float ratio = (xmax - xmin) * (ymax - ymin) / 308480.; + // if (ratio > 0.7) + // { + // detBoxes.at(i, 5) = -1; + // continue; + // } } - - Mat info(detect_result_group.count, 4, CV_32F); // 存储测距信息,存储格式:距离d,宽w,高h,角度α - if (detect_result_group.count) - { - getInfo(lframe, rframe, detBoxes, info); - //show stereo distance - //zai zhe li kai ke neng cheng xu hui beng le + // 存储测距信息,存储格式:距离d,宽w,高h,角度α + Mat info(detect_result_group.count, 4, CV_32F); + + // 如果有检测目标 + if (detect_result_group.count) + { + // getInfo()修改为calObjectRanging() + // 在这里测量目标的距离并存储到info中 + // 优化: 这个地方重复的将左右视图转换为灰度图,浪费CPU的算力 + getInfo(lframe, rframe, detBoxes, info); - // for(int i=0; i(i, 0); - // float w1 = info.at(i, 1); - // float h1 = info.at(i, 2); - // float alfa = info.at(i, 3); - - // int x1 = det_result->box.left; - // int y1 = det_result->box.top; - // int x2 = det_result->box.right; - // int y2 = det_result->box.bottom; - // char dc[50], wh[50]; - // sprintf(dc, "dis:%.2fcm ", median); - // sprintf(wh, "W: %.2fcm H: %.2fcm ", w1, h1); - // putText(Rframe, dc, Point(x1, y2), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 2); - // putText(Rframe, wh, Point(x1, y1), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 1.5); - // } - } + // for(int i=0; i{rframe, detBoxes, info}; + // float median = info.at(i, 0); + // float w1 = info.at(i, 1); + // float h1 = info.at(i, 2); + // float alfa = info.at(i, 3); + + // int x1 = det_result->box.left; + // int y1 = det_result->box.top; + // int x2 = det_result->box.right; + // int y2 = det_result->box.bottom; + // char dc[50], wh[50]; + // sprintf(dc, "dis:%.2fcm ", median); + // sprintf(wh, "W: %.2fcm H: %.2fcm ", w1, h1); + // putText(Rframe, dc, Point(x1, y2), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 2); + // putText(Rframe, wh, Point(x1, y1), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 1.5); + // } + } + + // 这个地方应该整为一个函数,负责显示帧率图像 + t = getTickCount() - t; + char fps[50]; + sprintf(fps, "fps: %d", int(1 / (t / getTickFrequency()))); + putText(Rframe, fps, Point(20, 20), FONT_HERSHEY_PLAIN, 1, Scalar(0, 0, 255), 1.5); + + cv::imshow("k",Rframe); + cv::waitKey(1); + + return std::vector{rframe, detBoxes, info}; } return std::vector{rframe}; }