RobotKernal-UESTC/Code/RK3588/stereo_yolo/rknpu1/examples/3rdparty/cnpy/cnpy.cpp

404 lines
12 KiB
C++

// Copyright (C) 2011 Carl Rogers
// Released under MIT License
// license available in LICENSE file, or at http://www.opensource.org/licenses/mit-license.php
#include "cnpy.h"
#include <stdint.h>
#include <algorithm>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <regex>
#include <stdexcept>
char cnpy::BigEndianTest(int size)
{
if (size == 1)
return '|';
int x = 1;
return (((char*)&x)[0]) ? '<' : '>';
}
char cnpy::map_type(const std::type_info& t)
{
if (t == typeid(float))
return 'f';
if (t == typeid(double))
return 'f';
if (t == typeid(long double))
return 'f';
if (t == typeid(int))
return 'i';
if (t == typeid(char))
return 'i';
if (t == typeid(signed char))
return 'i';
if (t == typeid(short))
return 'i';
if (t == typeid(long))
return 'i';
if (t == typeid(long long))
return 'i';
if (t == typeid(unsigned char))
return 'u';
if (t == typeid(unsigned short))
return 'u';
if (t == typeid(unsigned long))
return 'u';
if (t == typeid(unsigned long long))
return 'u';
if (t == typeid(unsigned int))
return 'u';
if (t == typeid(bool))
return 'b';
if (t == typeid(std::complex<float>))
return 'c';
if (t == typeid(std::complex<double>))
return 'c';
if (t == typeid(std::complex<long double>))
return 'c';
else
return '?';
}
template <>
std::vector<char>& cnpy::operator+=(std::vector<char>& lhs, const std::string rhs)
{
lhs.insert(lhs.end(), rhs.begin(), rhs.end());
return lhs;
}
template <>
std::vector<char>& cnpy::operator+=(std::vector<char>& lhs, const char* rhs)
{
// write in little endian
size_t len = strlen(rhs);
lhs.reserve(len);
for (size_t byte = 0; byte < len; byte++) {
lhs.push_back(rhs[byte]);
}
return lhs;
}
void cnpy::parse_npy_header(unsigned char* buffer, size_t& word_size, std::vector<size_t>& shape, bool& fortran_order,
std::string& typeName)
{
// std::string magic_string(buffer,6);
uint8_t major_version = *reinterpret_cast<uint8_t*>(buffer + 6);
uint8_t minor_version = *reinterpret_cast<uint8_t*>(buffer + 7);
uint16_t header_len = *reinterpret_cast<uint16_t*>(buffer + 8);
std::string header(reinterpret_cast<char*>(buffer + 9), header_len);
size_t loc1, loc2;
// fortran order
loc1 = header.find("fortran_order") + 16;
fortran_order = (header.substr(loc1, 4) == "True" ? true : false);
if (fortran_order)
throw std::runtime_error("npy input file: 'fortran_order' must be false, use: arr2 = np.ascontiguousarray(arr1)");
// shape
loc1 = header.find("(");
loc2 = header.find(")");
std::regex num_regex("[0-9][0-9]*");
std::smatch sm;
shape.clear();
std::string str_shape = header.substr(loc1 + 1, loc2 - loc1 - 1);
while (std::regex_search(str_shape, sm, num_regex)) {
shape.push_back(std::stoi(sm[0].str()));
str_shape = sm.suffix().str();
}
// endian, word size, data type
// byte order code | stands for not applicable.
// not sure when this applies except for byte array
loc1 = header.find("descr") + 9;
bool littleEndian = (header[loc1] == '<' || header[loc1] == '|' ? true : false);
assert(littleEndian);
// char type = header[loc1+1];
// assert(type == map_type(T));
std::string str_ws = header.substr(loc1 + 2);
loc2 = str_ws.find("'");
word_size = atoi(str_ws.substr(0, loc2).c_str());
if (header.substr(loc1 + 1, 1) == "i") {
typeName = "int";
} else if (header.substr(loc1 + 1, 1) == "u") {
typeName = "uint";
} else if (header.substr(loc1 + 1, 1) == "f") {
typeName = "float";
}
typeName = typeName + std::to_string(word_size * 8);
}
void cnpy::parse_npy_header(FILE* fp, size_t& word_size, std::vector<size_t>& shape, bool& fortran_order,
std::string& typeName)
{
char buffer[256];
size_t res = fread(buffer, sizeof(char), 11, fp);
if (res != 11)
throw std::runtime_error("parse_npy_header: failed fread");
std::string header = fgets(buffer, 256, fp);
assert(header[header.size() - 1] == '\n');
size_t loc1, loc2;
// fortran order
loc1 = header.find("fortran_order");
if (loc1 == std::string::npos)
throw std::runtime_error("parse_npy_header: failed to find header keyword: 'fortran_order'");
loc1 += 16;
fortran_order = (header.substr(loc1, 4) == "True" ? true : false);
if (fortran_order)
throw std::runtime_error("npy input file: 'fortran_order' must be false, use: arr2 = np.ascontiguousarray(arr1)");
// shape
loc1 = header.find("(");
loc2 = header.find(")");
if (loc1 == std::string::npos || loc2 == std::string::npos)
throw std::runtime_error("parse_npy_header: failed to find header keyword: '(' or ')'");
std::regex num_regex("[0-9][0-9]*");
std::smatch sm;
shape.clear();
std::string str_shape = header.substr(loc1 + 1, loc2 - loc1 - 1);
while (std::regex_search(str_shape, sm, num_regex)) {
shape.push_back(std::stoi(sm[0].str()));
str_shape = sm.suffix().str();
}
// endian, word size, data type
// byte order code | stands for not applicable.
// not sure when this applies except for byte array
loc1 = header.find("descr");
if (loc1 == std::string::npos)
throw std::runtime_error("parse_npy_header: failed to find header keyword: 'descr'");
loc1 += 9;
bool littleEndian = (header[loc1] == '<' || header[loc1] == '|' ? true : false);
assert(littleEndian);
// char type = header[loc1+1];
// assert(type == map_type(T));
std::string str_ws = header.substr(loc1 + 2);
loc2 = str_ws.find("'");
word_size = atoi(str_ws.substr(0, loc2).c_str());
if (header.substr(loc1 + 1, 1) == "i") {
typeName = "int";
} else if (header.substr(loc1 + 1, 1) == "u") {
typeName = "uint";
} else if (header.substr(loc1 + 1, 1) == "f") {
typeName = "float";
}
typeName = typeName + std::to_string(word_size * 8);
}
void cnpy::parse_zip_footer(FILE* fp, uint16_t& nrecs, size_t& global_header_size, size_t& global_header_offset)
{
std::vector<char> footer(22);
fseek(fp, -22, SEEK_END);
size_t res = fread(&footer[0], sizeof(char), 22, fp);
if (res != 22)
throw std::runtime_error("parse_zip_footer: failed fread");
uint16_t disk_no, disk_start, nrecs_on_disk, comment_len;
disk_no = *(uint16_t*)&footer[4];
disk_start = *(uint16_t*)&footer[6];
nrecs_on_disk = *(uint16_t*)&footer[8];
nrecs = *(uint16_t*)&footer[10];
global_header_size = *(uint32_t*)&footer[12];
global_header_offset = *(uint32_t*)&footer[16];
comment_len = *(uint16_t*)&footer[20];
assert(disk_no == 0);
assert(disk_start == 0);
assert(nrecs_on_disk == nrecs);
assert(comment_len == 0);
}
cnpy::NpyArray load_the_npy_file(FILE* fp)
{
std::vector<size_t> shape;
size_t word_size;
std::string typeName;
bool fortran_order;
cnpy::parse_npy_header(fp, word_size, shape, fortran_order, typeName);
cnpy::NpyArray arr(shape, word_size, fortran_order, typeName);
size_t nread = fread(arr.data<char>(), 1, arr.num_bytes(), fp);
if (nread != arr.num_bytes())
throw std::runtime_error("load_the_npy_file: failed fread");
return arr;
}
cnpy::NpyArray load_the_npz_array(FILE* fp, uint32_t compr_bytes, uint32_t uncompr_bytes)
{
std::vector<unsigned char> buffer_compr(compr_bytes);
std::vector<unsigned char> buffer_uncompr(uncompr_bytes);
size_t nread = fread(&buffer_compr[0], 1, compr_bytes, fp);
if (nread != compr_bytes)
throw std::runtime_error("load_the_npy_file: failed fread");
#if 0
int err;
z_stream d_stream;
d_stream.zalloc = Z_NULL;
d_stream.zfree = Z_NULL;
d_stream.opaque = Z_NULL;
d_stream.avail_in = 0;
d_stream.next_in = Z_NULL;
err = inflateInit2(&d_stream, -MAX_WBITS);
d_stream.avail_in = compr_bytes;
d_stream.next_in = &buffer_compr[0];
d_stream.avail_out = uncompr_bytes;
d_stream.next_out = &buffer_uncompr[0];
err = inflate(&d_stream, Z_FINISH);
err = inflateEnd(&d_stream);
#endif
std::vector<size_t> shape;
size_t word_size;
bool fortran_order;
std::string typeName;
cnpy::parse_npy_header(&buffer_uncompr[0], word_size, shape, fortran_order, typeName);
cnpy::NpyArray array(shape, word_size, fortran_order, typeName);
size_t offset = uncompr_bytes - array.num_bytes();
memcpy(array.data<unsigned char>(), &buffer_uncompr[0] + offset, array.num_bytes());
return array;
}
cnpy::npz_t cnpy::npz_load(std::string fname)
{
FILE* fp = fopen(fname.c_str(), "rb");
if (!fp) {
throw std::runtime_error("npz_load: Error! Unable to open file " + fname + "!");
}
cnpy::npz_t arrays;
while (1) {
std::vector<char> local_header(30);
size_t headerres = fread(&local_header[0], sizeof(char), 30, fp);
if (headerres != 30)
throw std::runtime_error("npz_load: failed fread");
// if we've reached the global header, stop reading
if (local_header[2] != 0x03 || local_header[3] != 0x04)
break;
// read in the variable name
uint16_t name_len = *(uint16_t*)&local_header[26];
std::string varname(name_len, ' ');
size_t vname_res = fread(&varname[0], sizeof(char), name_len, fp);
if (vname_res != name_len)
throw std::runtime_error("npz_load: failed fread");
// erase the lagging .npy
varname.erase(varname.end() - 4, varname.end());
// read in the extra field
uint16_t extra_field_len = *(uint16_t*)&local_header[28];
if (extra_field_len > 0) {
std::vector<char> buff(extra_field_len);
size_t efield_res = fread(&buff[0], sizeof(char), extra_field_len, fp);
if (efield_res != extra_field_len)
throw std::runtime_error("npz_load: failed fread");
}
uint16_t compr_method = *reinterpret_cast<uint16_t*>(&local_header[0] + 8);
uint32_t compr_bytes = *reinterpret_cast<uint32_t*>(&local_header[0] + 18);
uint32_t uncompr_bytes = *reinterpret_cast<uint32_t*>(&local_header[0] + 22);
if (compr_method == 0) {
arrays[varname] = load_the_npy_file(fp);
} else {
arrays[varname] = load_the_npz_array(fp, compr_bytes, uncompr_bytes);
}
}
fclose(fp);
return arrays;
}
cnpy::NpyArray cnpy::npz_load(std::string fname, std::string varname)
{
FILE* fp = fopen(fname.c_str(), "rb");
if (!fp)
throw std::runtime_error("npz_load: Unable to open file " + fname);
while (1) {
std::vector<char> local_header(30);
size_t header_res = fread(&local_header[0], sizeof(char), 30, fp);
if (header_res != 30)
throw std::runtime_error("npz_load: failed fread");
// if we've reached the global header, stop reading
if (local_header[2] != 0x03 || local_header[3] != 0x04)
break;
// read in the variable name
uint16_t name_len = *(uint16_t*)&local_header[26];
std::string vname(name_len, ' ');
size_t vname_res = fread(&vname[0], sizeof(char), name_len, fp);
if (vname_res != name_len)
throw std::runtime_error("npz_load: failed fread");
vname.erase(vname.end() - 4, vname.end()); // erase the lagging .npy
// read in the extra field
uint16_t extra_field_len = *(uint16_t*)&local_header[28];
fseek(fp, extra_field_len, SEEK_CUR); // skip past the extra field
uint16_t compr_method = *reinterpret_cast<uint16_t*>(&local_header[0] + 8);
uint32_t compr_bytes = *reinterpret_cast<uint32_t*>(&local_header[0] + 18);
uint32_t uncompr_bytes = *reinterpret_cast<uint32_t*>(&local_header[0] + 22);
if (vname == varname) {
NpyArray array = (compr_method == 0) ? load_the_npy_file(fp) : load_the_npz_array(fp, compr_bytes, uncompr_bytes);
fclose(fp);
return array;
} else {
// skip past the data
uint32_t size = *(uint32_t*)&local_header[22];
fseek(fp, size, SEEK_CUR);
}
}
fclose(fp);
// if we get here, we haven't found the variable in the file
throw std::runtime_error("npz_load: Variable name " + varname + " not found in " + fname);
}
cnpy::NpyArray cnpy::npy_load(std::string fname)
{
FILE* fp = fopen(fname.c_str(), "rb");
if (!fp)
throw std::runtime_error("npy_load: Unable to open file " + fname);
NpyArray arr = load_the_npy_file(fp);
fclose(fp);
return arr;
}