1
0
Fork 0
NotesUESTC/算法开发笔记/惯性传感器算法/Mahony姿态解算.md

61 lines
2.2 KiB
Markdown
Raw Normal View History

2024-03-27 11:19:08 +08:00
# **Mahony姿态解算**
**2022-09-27 :詹力**
## 一、从IMU到Mahony的坐标系
实际上Mahony是没有明确的坐标系的概念的不管是什么传感器的坐标轴输入到Mahony解算出来的四元数的qx,qy,qz就和原始输入Mahony的IMU的轴是对应的。但是这样做的会造成四元数到欧拉角的计算出现混乱麻烦。为了代码方便我们最好是先 **将IMU的坐标系映射到笛卡尔3D坐标系** 。以MPU9250为例子其坐标轴定义如下图所示(加速度计和陀螺仪MPU9250内置磁力计坐标系不同)。
<div align=center><img src="./Image/MPU9250_Cord.png" alt="MPU9250_Cord" style="zoom:50%;" /></div>
笛卡尔3D坐标系如下图所示
<img src="./Image/CartesianCoordinates.png" alt="CartesianCoordinates" style="zoom: 33%;" />
将Mahony算法确定以笛卡尔3D坐标系方式描述那么对应的转换代码如下所示
```C++
Mahony.x = -Imu.y;
Mahony.y = Imu.x;
Mahony.z = Imu.z;
```
## 二、从四元数到欧拉角的转换
四元数到欧拉角的转换是和坐标系的定义存在关系的在不同的坐标系下需要推导四元数到欧拉角的转换公式。这样非常的麻烦除非在必要的情况下一般用标准的笛卡尔3D坐标计算会比较方便。
笛卡尔3D坐标系下的四元数转换到欧拉角代码如下所示
```c++
Mahony.Pitch = asin(-2.0f*(z*x-w*y))* (180.0f /PI);
Mahony.Yaw = atan2(y*x + w*z,0.5f - y*y - z*z)* (180.0f /PI);
Mahony.Roll = atan2(y*z + w*x,0.5f - y*y - x*x)* (180.0f /PI);
```
## 三、Mahony算法中载体系的重力投影到地理系
常见代码的写法如下图所示:
```C
// 写法1
float halfvx = q1 * q3 - q0 * q2;
float halfvy = q0 * q1 + q2 * q3;
float halfvz = q0 * q0 - 0.5f + q3 * q3;
// 写法2
float vx = 2.0f*(q1*q3 - q0*q2);
float vy = 2.0f*(q0*q1 + q2*q3);
float vz = q0*q0 - q1*q1 - q2*q2 + q3*q3;
```
比较有差异的主要在于vz的写法这两种的写法其实是一样的推导如下所示
$$
\begin{align*}
vz &= q_0^2-0.5+q_3^2 \\
2vz &= 2q_0^2-1+2q_3^2 \\
&= 2q_0^2+2q_3^2-q_0^2-q_1^2-q_2^2-q_3^2 \\
&= q_0^2-q_1^2-q_2^2+q_3^2 \\
\end{align*}
$$