forked from logzhan/NotesUESTC
33 lines
864 B
Markdown
33 lines
864 B
Markdown
|
数学基础
|
||
|
|
||
|
|
||
|
|
||
|
1、从点到面的距离推导
|
||
|
|
||
|
求三维空间内点$p(x_p,y_p,z_p)$到平面$Ax+By+Cz+D$的距离。
|
||
|
|
||
|
很容易知道,平面方程$Ax+By+Cz+D=0$的法向量是$\vec n = (A,B,C)$。对于过空间点p且方向向量为$\vec n$的直线为:
|
||
|
|
||
|
|
||
|
$$
|
||
|
\frac{x-x_P}{A}=\frac{y-y_p}{B}=\frac{z-z_p}{C}
|
||
|
$$
|
||
|
联立方程组:
|
||
|
$$
|
||
|
\frac{x-x_P}{A}=\frac{y-y_p}{B}=\frac{z-z_p}{C} \\
|
||
|
Ax+By+Cz+D=0
|
||
|
$$
|
||
|
假设三维直线和三维平面的交点为$(x_0,y_0,z_0)$
|
||
|
$$
|
||
|
\frac{x_0-x_P}{A}=\frac{y_0-y_p}{B} \\
|
||
|
\frac{y_0-y_p}{B}=\frac{z_0-z_p}{C} \\
|
||
|
Ax_0+By_0+Cz_0+D_0=0
|
||
|
$$
|
||
|
那么根据距离公式:
|
||
|
$$
|
||
|
d=\sqrt{(x_0-x_p)^2+(y_0-y_p)^2+(z_0-z_p)^2}\\
|
||
|
d=\sqrt{(\frac{A}{B})^2\cdot(y_0-y_p)^2+(y_0-y_p)^2+(\frac{C}{B})^2\cdot(y_0-y_p)^2}\\
|
||
|
d^2=\frac{A^2\cdot(y_0-y_p)^2}{B^2}+(y_0-y_p)^2+\frac{C^2}{B^2}\cdot(y_0-y_p)^2
|
||
|
=\frac{(A^2+B^2+C^2)}{B^2}\cdot(y_0-y_p)^2
|
||
|
$$
|