1
0
Fork 0
RobotKernal-UESTC/Code/RK3588 Develop/stereo_yolo/rknpu1/examples/3rdparty/cnpy/cnpy.h

322 lines
11 KiB
C
Raw Normal View History

2024-06-04 16:44:33 +08:00
// Copyright (C) 2011 Carl Rogers
// Released under MIT License
// license available in LICENSE file, or at http://www.opensource.org/licenses/mit-license.php
#ifndef LIBCNPY_H_
#define LIBCNPY_H_
#if 0
#include <zlib.h>
#endif
#include <stdint.h>
#include <cassert>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <string>
#include <typeinfo>
#include <vector>
namespace cnpy {
struct NpyArray
{
NpyArray(const std::vector<size_t>& _shape, size_t _word_size, bool _fortran_order, std::string _typeName)
: shape(_shape)
, word_size(_word_size)
, fortran_order(_fortran_order)
, typeName(_typeName)
{
num_vals = 1;
for (size_t i = 0; i < shape.size(); i++)
num_vals *= shape[i];
data_holder = std::shared_ptr<std::vector<char>>(new std::vector<char>(num_vals * word_size));
}
NpyArray()
: shape(0)
, word_size(0)
, fortran_order(0)
, num_vals(0)
{}
template <typename T>
T* data()
{
return reinterpret_cast<T*>(&(*data_holder)[0]);
}
template <typename T>
const T* data() const
{
return reinterpret_cast<T*>(&(*data_holder)[0]);
}
template <typename T>
std::vector<T> as_vec() const
{
const T* p = data<T>();
return std::vector<T>(p, p + num_vals);
}
size_t num_bytes() const { return data_holder->size(); }
std::shared_ptr<std::vector<char>> data_holder;
std::vector<size_t> shape;
size_t word_size;
bool fortran_order;
size_t num_vals;
std::string typeName;
};
using npz_t = std::map<std::string, NpyArray>;
char BigEndianTest(int size);
char map_type(const std::type_info& t);
template <typename T>
std::vector<char> create_npy_header(const std::vector<size_t>& shape);
void parse_npy_header(FILE* fp, size_t& word_size, std::vector<size_t>& shape, bool& fortran_order,
std::string& typeName);
void parse_npy_header(unsigned char* buffer, size_t& word_size, std::vector<size_t>& shape, bool& fortran_order,
std::string& typeName);
void parse_zip_footer(FILE* fp, uint16_t& nrecs, size_t& global_header_size, size_t& global_header_offset);
npz_t npz_load(std::string fname);
NpyArray npz_load(std::string fname, std::string varname);
NpyArray npy_load(std::string fname);
template <typename T>
std::vector<char>& operator+=(std::vector<char>& lhs, const T rhs)
{
// write in little endian
for (size_t byte = 0; byte < sizeof(T); byte++) {
char val = *((char*)&rhs + byte);
lhs.push_back(val);
}
return lhs;
}
template <>
std::vector<char>& operator+=(std::vector<char>& lhs, const std::string rhs);
template <>
std::vector<char>& operator+=(std::vector<char>& lhs, const char* rhs);
template <typename T>
int npy_save(std::string fname, const T* data, const std::vector<size_t> shape, std::string mode = "w")
{
std::ofstream ofs(fname, std::ios::out);
if (!ofs.is_open()) {
return -1;
}
ofs.close();
FILE* fp = NULL;
std::vector<size_t> true_data_shape; // if appending, the shape of existing + new data
if (mode == "a")
fp = fopen(fname.c_str(), "r+b");
if (fp) {
// file exists. we need to append to it. read the header, modify the array size
size_t word_size;
bool fortran_order;
std::string typeName;
parse_npy_header(fp, word_size, true_data_shape, fortran_order, typeName);
assert(!fortran_order);
if (word_size != sizeof(T)) {
std::cout << "libnpy error: " << fname << " has word size " << word_size << " but npy_save appending data sized "
<< sizeof(T) << "\n";
assert(word_size == sizeof(T));
}
if (true_data_shape.size() != shape.size()) {
std::cout << "libnpy error: npy_save attempting to append misdimensioned data to " << fname << "\n";
assert(true_data_shape.size() != shape.size());
}
for (size_t i = 1; i < shape.size(); i++) {
if (shape[i] != true_data_shape[i]) {
std::cout << "libnpy error: npy_save attempting to append misshaped data to " << fname << "\n";
assert(shape[i] == true_data_shape[i]);
}
}
true_data_shape[0] += shape[0];
} else {
fp = fopen(fname.c_str(), "wb");
true_data_shape = shape;
}
std::vector<char> header = create_npy_header<T>(true_data_shape);
size_t nels = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<size_t>());
fseek(fp, 0, SEEK_SET);
fwrite(&header[0], sizeof(char), header.size(), fp);
fseek(fp, 0, SEEK_END);
fwrite(data, sizeof(T), nels, fp);
fclose(fp);
return 0;
}
template <typename T>
void npz_save(std::string zipname, std::string fname, const T* data, const std::vector<size_t>& shape,
std::string mode = "w")
{
// first, append a .npy to the fname
fname += ".npy";
// now, on with the show
FILE* fp = NULL;
uint16_t nrecs = 0;
size_t global_header_offset = 0;
std::vector<char> global_header;
if (mode == "a")
fp = fopen(zipname.c_str(), "r+b");
if (fp) {
// zip file exists. we need to add a new npy file to it.
// first read the footer. this gives us the offset and size of the global header
// then read and store the global header.
// below, we will write the the new data at the start of the global header then append the global header and footer
// below it
size_t global_header_size;
parse_zip_footer(fp, nrecs, global_header_size, global_header_offset);
fseek(fp, global_header_offset, SEEK_SET);
global_header.resize(global_header_size);
size_t res = fread(&global_header[0], sizeof(char), global_header_size, fp);
if (res != global_header_size) {
throw std::runtime_error("npz_save: header read error while adding to existing zip");
}
fseek(fp, global_header_offset, SEEK_SET);
} else {
fp = fopen(zipname.c_str(), "wb");
}
std::vector<char> npy_header = create_npy_header<T>(shape);
size_t nels = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<size_t>());
size_t nbytes = nels * sizeof(T) + npy_header.size();
#if 0
// get the CRC of the data to be added
uint32_t crc = crc32(0L, (uint8_t*)&npy_header[0], npy_header.size());
crc = crc32(crc, (uint8_t*)data, nels * sizeof(T));
#else
uint32_t crc = 0;
#endif
// build the local header
std::vector<char> local_header;
local_header += "PK"; // first part of sig
local_header += (uint16_t)0x0403; // second part of sig
local_header += (uint16_t)20; // min version to extract
local_header += (uint16_t)0; // general purpose bit flag
local_header += (uint16_t)0; // compression method
local_header += (uint16_t)0; // file last mod time
local_header += (uint16_t)0; // file last mod date
local_header += (uint32_t)crc; // crc
local_header += (uint32_t)nbytes; // compressed size
local_header += (uint32_t)nbytes; // uncompressed size
local_header += (uint16_t)fname.size(); // fname length
local_header += (uint16_t)0; // extra field length
local_header += fname;
// build global header
global_header += "PK"; // first part of sig
global_header += (uint16_t)0x0201; // second part of sig
global_header += (uint16_t)20; // version made by
global_header.insert(global_header.end(), local_header.begin() + 4, local_header.begin() + 30);
global_header += (uint16_t)0; // file comment length
global_header += (uint16_t)0; // disk number where file starts
global_header += (uint16_t)0; // internal file attributes
global_header += (uint32_t)0; // external file attributes
global_header += (uint32_t)
global_header_offset; // relative offset of local file header, since it begins where the global header used to begin
global_header += fname;
// build footer
std::vector<char> footer;
footer += "PK"; // first part of sig
footer += (uint16_t)0x0605; // second part of sig
footer += (uint16_t)0; // number of this disk
footer += (uint16_t)0; // disk where footer starts
footer += (uint16_t)(nrecs + 1); // number of records on this disk
footer += (uint16_t)(nrecs + 1); // total number of records
footer += (uint32_t)global_header.size(); // nbytes of global headers
footer +=
(uint32_t)(global_header_offset + nbytes + local_header.size()); // offset of start of global headers, since global
// header now starts after newly written array
footer += (uint16_t)0; // zip file comment length
// write everything
fwrite(&local_header[0], sizeof(char), local_header.size(), fp);
fwrite(&npy_header[0], sizeof(char), npy_header.size(), fp);
fwrite(data, sizeof(T), nels, fp);
fwrite(&global_header[0], sizeof(char), global_header.size(), fp);
fwrite(&footer[0], sizeof(char), footer.size(), fp);
fclose(fp);
}
template <typename T>
void npy_save(std::string fname, const std::vector<T> data, std::string mode = "w")
{
std::vector<size_t> shape;
shape.push_back(data.size());
npy_save(fname, &data[0], shape, mode);
}
template <typename T>
void npz_save(std::string zipname, std::string fname, const std::vector<T> data, std::string mode = "w")
{
std::vector<size_t> shape;
shape.push_back(data.size());
npz_save(zipname, fname, &data[0], shape, mode);
}
template <typename T>
std::vector<char> create_npy_header(const std::vector<size_t>& shape)
{
const char* tpye_name = typeid(T).name();
std::vector<char> dict;
dict += "{'descr': '";
dict += BigEndianTest(sizeof(T));
if (std::string(tpye_name) == "N4rknn7float16E") {
dict += "f";
} else {
dict += map_type(typeid(T));
}
dict += std::to_string(sizeof(T));
dict += "', 'fortran_order': False, 'shape': (";
dict += std::to_string(shape[0]);
for (size_t i = 1; i < shape.size(); i++) {
dict += ", ";
dict += std::to_string(shape[i]);
}
if (shape.size() == 1)
dict += ",";
dict += "), }";
// pad with spaces so that preamble+dict is modulo 16 bytes. preamble is 10 bytes. dict needs to end with \n
int remainder = 16 - (10 + dict.size()) % 16;
dict.insert(dict.end(), remainder, ' ');
dict.back() = '\n';
std::vector<char> header;
header += (char)0x93;
header += "NUMPY";
header += (char)0x01; // major version of numpy format
header += (char)0x00; // minor version of numpy format
header += (uint16_t)dict.size();
header.insert(header.end(), dict.begin(), dict.end());
return header;
}
} // namespace cnpy
#endif