COAT/coat-pvtv2-b2/datasets/build.py

105 lines
3.5 KiB
Python
Raw Normal View History

2023-10-10 21:52:30 +08:00
# This file is part of COAT, and is distributed under the
# OSI-approved BSD 3-Clause License. See top-level LICENSE file or
# https://github.com/Kitware/COAT/blob/master/LICENSE for details.
import torch
from utils.transforms import build_transforms
from utils.utils import create_small_table
from .cuhk_sysu import CUHKSYSU
from .prw import PRW
def print_statistics(dataset):
"""
Print dataset statistics.
"""
num_imgs = len(dataset.annotations)
num_boxes = 0
pid_set = set()
for anno in dataset.annotations:
num_boxes += anno["boxes"].shape[0]
for pid in anno["pids"]:
pid_set.add(pid)
statistics = {
"dataset": dataset.name,
"split": dataset.split,
"num_images": num_imgs,
"num_boxes": num_boxes,
}
if dataset.name != "CUHK-SYSU" or dataset.split != "query":
pid_list = sorted(list(pid_set))
if dataset.split == "query":
num_pids, min_pid, max_pid = len(pid_list), min(pid_list), max(pid_list)
statistics.update(
{
"num_labeled_pids": num_pids,
"min_labeled_pid": int(min_pid),
"max_labeled_pid": int(max_pid),
}
)
else:
unlabeled_pid = pid_list[-1]
pid_list = pid_list[:-1] # remove unlabeled pid
num_pids, min_pid, max_pid = len(pid_list), min(pid_list), max(pid_list)
statistics.update(
{
"num_labeled_pids": num_pids,
"min_labeled_pid": int(min_pid),
"max_labeled_pid": int(max_pid),
"unlabeled_pid": int(unlabeled_pid),
}
)
print(f"=> {dataset.name}-{dataset.split} loaded:\n" + create_small_table(statistics))
def build_dataset(dataset_name, root, transforms, split, verbose=True):
if dataset_name == "CUHK-SYSU":
dataset = CUHKSYSU(root, transforms, split)
elif dataset_name == "PRW":
dataset = PRW(root, transforms, split)
else:
raise NotImplementedError(f"Unknow dataset: {dataset_name}")
if verbose:
print_statistics(dataset)
return dataset
def collate_fn(batch):
return tuple(zip(*batch))
def build_train_loader(cfg):
transforms = build_transforms(cfg, is_train=True)
dataset = build_dataset(cfg.INPUT.DATASET, cfg.INPUT.DATA_ROOT, transforms, "train")
return torch.utils.data.DataLoader(
dataset,
batch_size=cfg.INPUT.BATCH_SIZE_TRAIN,
shuffle=True,
num_workers=cfg.INPUT.NUM_WORKERS_TRAIN,
pin_memory=True,
drop_last=True,
collate_fn=collate_fn,
)
def build_test_loader(cfg):
transforms = build_transforms(cfg, is_train=False)
gallery_set = build_dataset(cfg.INPUT.DATASET, cfg.INPUT.DATA_ROOT, transforms, "gallery")
query_set = build_dataset(cfg.INPUT.DATASET, cfg.INPUT.DATA_ROOT, transforms, "query")
gallery_loader = torch.utils.data.DataLoader(
gallery_set,
batch_size=cfg.INPUT.BATCH_SIZE_TEST,
shuffle=False,
num_workers=cfg.INPUT.NUM_WORKERS_TEST,
pin_memory=True,
collate_fn=collate_fn,
)
query_loader = torch.utils.data.DataLoader(
query_set,
batch_size=cfg.INPUT.BATCH_SIZE_TEST,
shuffle=False,
num_workers=cfg.INPUT.NUM_WORKERS_TEST,
pin_memory=True,
collate_fn=collate_fn,
)
return gallery_loader, query_loader