# This file is part of COAT, and is distributed under the # OSI-approved BSD 3-Clause License. See top-level LICENSE file or # https://github.com/Kitware/COAT/blob/master/LICENSE for details. import datetime import errno import json import os import os.path as osp import pickle import random import time from collections import defaultdict, deque import numpy as np import torch import torch.distributed as dist from tabulate import tabulate # -------------------------------------------------------- # # Logger # # -------------------------------------------------------- # class SmoothedValue(object): """ Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) # -------------------------------------------------------- # # Distributed training # # -------------------------------------------------------- # def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device="cuda") size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) if local_size != max_size: padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() else: print("Not using distributed mode") args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) torch.distributed.barrier() setup_for_distributed(args.rank == 0) # -------------------------------------------------------- # # File operation # # -------------------------------------------------------- # def filename(path): return osp.splitext(osp.basename(path))[0] def mkdir(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def read_json(fpath): with open(fpath, "r") as f: obj = json.load(f) return obj def write_json(obj, fpath): mkdir(osp.dirname(fpath)) _obj = obj.copy() for k, v in _obj.items(): if isinstance(v, np.ndarray): _obj.pop(k) with open(fpath, "w") as f: json.dump(_obj, f, indent=4, separators=(",", ": ")) def symlink(src, dst, overwrite=True, **kwargs): if os.path.lexists(dst) and overwrite: os.remove(dst) os.symlink(src, dst, **kwargs) # -------------------------------------------------------- # # Misc # # -------------------------------------------------------- # def create_small_table(small_dict): """ Create a small table using the keys of small_dict as headers. This is only suitable for small dictionaries. Args: small_dict (dict): a result dictionary of only a few items. Returns: str: the table as a string. """ keys, values = tuple(zip(*small_dict.items())) table = tabulate( [values], headers=keys, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center", ) return table def warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor): def f(x): if x >= warmup_iters: return 1 alpha = float(x) / warmup_iters return warmup_factor * (1 - alpha) + alpha return torch.optim.lr_scheduler.LambdaLR(optimizer, f) def resume_from_ckpt(ckpt_path, model, optimizer=None, lr_scheduler=None): ckpt = torch.load(ckpt_path) model.load_state_dict(ckpt["model"], strict=False) if optimizer is not None: optimizer.load_state_dict(ckpt["optimizer"]) if lr_scheduler is not None: lr_scheduler.load_state_dict(ckpt["lr_scheduler"]) print(f"loaded checkpoint {ckpt_path}") print(f"model was trained for {ckpt['epoch']} epochs") return ckpt["epoch"] def set_random_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed)