CleanRobot-UESTC/融合/ranging.cpp

445 lines
18 KiB
C++
Raw Normal View History

2023-12-11 11:51:46 +08:00
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <stdio.h>
#include "ranging.h"
#include <math.h>
#include <stdlib.h>
#include "rknn_sdk.h"
#include <string.h>
#include <sys/time.h>
#include <dlfcn.h>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <sys/stat.h>
#include <sys/types.h>
#include <dirent.h>
#include <vector>
#include <tuple>
#include <string>
#include <string.h>
#include <algorithm>
#include <ros/ros.h>
using namespace cv;
void Ranging::rectifyImage(Mat &oriImgL, Mat &oriImgR) //重映射函数
{
remap(oriImgL, oriImgL, mapX1, mapX2, INTER_LINEAR);
remap(oriImgR, oriImgR, mapY1, mapY2, INTER_LINEAR);
}
std::vector<float> Ranging::pic2cam(int u, int v) //像素坐标转相机坐标
{
//(u,v)->(x,y)"(loc[0],loc[1])"
std::vector<float> loc;
loc.push_back((u - cam_matrix_right.at<double>(0, 2)) * q.at<double>(2, 3) / cam_matrix_right.at<double>(0, 0));
loc.push_back((v - cam_matrix_right.at<double>(1, 2)) * q.at<double>(2, 3) / cam_matrix_right.at<double>(1, 1));
return loc;
}
std::vector<int> Ranging::muban(Mat &left_image, Mat &right_image, const int *coordinates) //模板匹配
{
int x1 = coordinates[0], y1 = coordinates[1], x2 = coordinates[2], y2 = coordinates[3];
// cv::Mat right_image_,left_image_;
// cv::pyrDown(right_image, right_image_);
// cv::pyrDown(left_image, left_image_);
Mat tpl = right_image.rowRange(max(y1 - 2, 0), min(y2 + 2, 479)).colRange(x1, x2); //获取目标框
Mat target = left_image.rowRange(max(y1 - 20, 0), min(y2 + 20, 479)).colRange(0, 639); //待匹配图像,极线约束,只需要同水平区域
// Mat tpl = right_image_.rowRange(max(int(0.5*y1 - 2), 0), min(int(0.5*y2 + 2), 479)).colRange(int(0.5*x1), int(0.5*x2));
// Mat target = left_image_.rowRange(max(int(0.5*y1 - 10), 0), min(int(0.5*y2 + 10), 239)).colRange(0, 319);
int th = tpl.rows, tw = tpl.cols;
Mat result;
// methods = TM_CCOEFF_NORMED, TM_SQDIFF_NORMED, TM_CCORR_NORMED]
matchTemplate(target, tpl, result, TM_CCOEFF_NORMED); //匹配方法:归一化相关系数即零均值归一化互相关
double minVal, maxVal;
Point minLoc, maxLoc;
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc); //得到匹配点坐标
Point tl = maxLoc, br;
br.x = min(maxLoc.x + tw, 639); //转为像素坐标系
br.y = min(maxLoc.y + th, 479); //转为像素坐标系
////展示匹配结果
// br.x = min(maxLoc.x + tw, 319);
// br.y = min(maxLoc.y + th, 239);
//rectangle(target, tl, br, (0, 255, 0), 3);
//imshow("match-", target);
//waitKey(2);
std::vector<int> maxloc;
maxloc.push_back(maxLoc.x);
maxloc.push_back(maxLoc.y);
return maxloc;
}
void Ranging::horizon_estimate(Mat& img, Mat& bboxs,int k)
{
//保证摄像头与地面平行
int x1 = bboxs.at<float>(k, 0);
int x2 = bboxs.at<float>(k, 2);
int y1 = bboxs.at<float>(k, 1);
int y2 = bboxs.at<float>(k, 3);
float Conf = bboxs.at<float>(k, 4);
int cls = bboxs.at<float>(k, 5);
float Y_B, Y_H;
Mat edge, grayImage;
vector<cv::Point> idx;
Mat tpl = img.rowRange(y1, min(y2+5,479)).colRange(x1, x2); // 取感兴趣范围
//Mat target = left_image.rowRange(max(y1 - 20, 0), min(y2 + 20, 479)).colRange(0, 639);
Mat Z = Mat::zeros(2, tpl.cols, CV_32FC1);
cvtColor(tpl, grayImage, COLOR_BGR2GRAY);
GaussianBlur(grayImage,grayImage,Size(5,5),0);
Canny(grayImage, edge, 120, 180, 3); //提取边缘,获取与地面接触点
//cv::imshow("1",edge);
//cv::waitKey(1);
float cluster[650];
for (int i = 0;i<650;i++)
{
cluster[i] = 0;
}
int y_b, y_h;
int j = 0;
for (int i = 0; i < x2-x1; i++)
{
//Mat temp = edge.rowRange(max(y1, 0), min(y2 + 4, 479)).colRange(x1, x2);
Mat temp = edge.col(i); //取第i列
// std::cout << "temp: " <<temp << std::endl;
cv::findNonZero(temp, idx);
std::vector<float> point_b = pic2cam(x1 + i, 240); //转为相机坐标系
std::vector<float> point_H = pic2cam(320, 240);
float alfa = atan((point_b[0] - point_H[0]) / q.at<double>(2, 3));
if (idx.size() < 1)
{
Z.at<float>(0, i) = 0;
Z.at<float>(1, i) = alfa;
continue;
}
int y_b = idx[idx.size() - 1].y + y1; //
y_b = int(y_b + y_b*0.03);
int y_h = 240;
point_b = pic2cam(x1 + i, y_b); //转为相机坐标系
point_H = pic2cam(320, y_h);
Y_B = point_b[1];
Y_H = point_H[1];
// std::cout << "y_b: " << y_b << std::endl;
float H_c = 60; //摄像头离地高度单位mm
float theta = 0; //摄像头与地面夹角,弧度
float d = (1/cos(theta)* cos(theta)) * q.at<double>(2, 3) * H_c / (Y_B - Y_H)- H_c*tan(theta);
alfa = atan((point_b[0] - point_H[0]) / q.at<double>(2, 3));
//cout << "d: " << d << endl;
if (d > 700)
{d = 0;}
Z.at<float>(0, i) = d/cos(alfa);
Z.at<float>(1, i) = alfa;
}
/*if (i > 0)
{
if (abs(Z.at<float>(0, i) - Z.at<float>(0, i - 1)) < 40) //聚类
{
cluster[j] = cluster[j] + 1;
}
else
{
j = j + 1;
cluster[j] = 1;
//std::cout<<"j : "<< j<< std::endl;
}
}
}
//int max_loc = distance(cluster,max_element(cluster,cluster + sizeof(cluster)/sizeof(cluster[0]))); //只保留数量最多的一类其余置0
//std::cout<<" max_loc : "<< max_loc<<std::endl;
int temp = 0;
for (int i = 0; i < j; i++)
{
if (cluster[i] < 3)
{
for (int t = temp; t < temp + cluster[i]; t++)
{
Z.at<float>(0, t) = 0;
}
}
temp = temp + cluster[i];
}*/
// std::cout << "z : " <<Z << std::endl;
this->Z = Z.clone();
}
void Ranging::getInfo(Mat &imgL, Mat &imgR, Mat &detBoxes, Mat &info)
{
// ֱ<><D6B1>ͼ<EFBFBD><CDBC><EFBFBD>
Mat imgGrayL, imgGrayR;
cvtColor(imgL, imgGrayL, COLOR_BGR2GRAY);
cvtColor(imgR, imgGrayR, COLOR_BGR2GRAY);
Mat imgR_weight = imgR.clone();
Mat infoRow;
for (uchar i = 0; i < detBoxes.rows; i++)
{
int x1 = detBoxes.at<float>(i, 0);
int y1 = detBoxes.at<float>(i, 1);
int x2 = detBoxes.at<float>(i, 2);
int y2 = detBoxes.at<float>(i, 3);
//std::cout<<"x1: "<<x1<<"x2: "<<x2<<"y1: "<<y1<<"y2: "<<y2<<std::endl;
float Conf = detBoxes.at<float>(i, 4);
int cls = detBoxes.at<float>(i, 5);
if (cls == 6 || cls == 10 || cls == 11) //体重秤,地毯和毛巾采用单目测距方法
{
horizon_estimate(imgR_weight, detBoxes, i);
}
if (x1 > 600 || x2 < 50 || y1 < 5 || y2 > 475 || x1 < 2 || x2 > 590 || abs(x2 - x1) > 550) //当目标框偏左、偏右或者过大,略去该物体
{
//char cm[15];
//sprintf(cm, "cannot match !");
char cm[15];
//sprintf(cm, "cannot match !");
sprintf(cm, "%d , %.2f", cls,Conf);
putText(imgR, cm, Point((x1), (y1)), FONT_HERSHEY_PLAIN, 2.2, Scalar(0, 0, 255), 2);
infoRow = (Mat_<float>(1, 4) << -1, -1, -1, -1);
infoRow.copyTo(info.row(i));
rectangle(imgR, Point(int(x1), int(y1)),
Point(int(x2), int(y2)), Scalar(0, 0, 255));
continue;
}
if (cls!=0 && cls!=1 && cls!=2 && cls!= 6 && cls!= 7 && cls!= 10 && cls!=11 && cls!=14 && cls!=15) //大物体不进行测距
{
if (x1 < 30 || x2 < 80 || x1>580 || x2 > 610) //删除边缘的目标框
{
detBoxes.at<float>(i, 5) = -1;
cls = detBoxes.at<float>(i, 5);
}
//char cm[15];
//sprintf(cm, "cannot match !");
char cm[15];
//sprintf(cm, "cannot match !");
sprintf(cm, "%d , %.2f", cls,Conf);
putText(imgR, cm, Point((x1), (y1)), FONT_HERSHEY_PLAIN, 1, Scalar(0, 0, 255), 2);
infoRow = (Mat_<float>(1, 4) << -1, -1, -1, -1);
infoRow.copyTo(info.row(i));
rectangle(imgR, Point(int(x1), int(y1)),
Point(int(x2), int(y2)), Scalar(0, 0, 255));
continue;
}
rectangle(imgR, Point(int(x1), int(y1)),
Point(int(x2), int(y2)), Scalar(0, 0, 255)); //绘制目标框
int coordinates[4] = {x1, y1, x2, y2};
std::vector<int> disp_pixel = muban(imgGrayL, imgGrayR, coordinates); //模板匹配
float disp_pixel_x = disp_pixel[0] - x1; //ˮ计算水平视差
float disp_pixel_y = disp_pixel[1] - y1; //
disp_pixel_x = (int)(disp_pixel_x + disp_pixel_x * 0.12); //0.12为模板匹配产生的误差,为经验值,通过拟合得到
//Mat disp_matrix = Mat(1, 1, CV_32F, Scalar(disp_pixel_x)), disp_pixel_xyz;
Mat disp_matrix = Mat(imgGrayL.rows, imgGrayL.cols, CV_32F, Scalar(disp_pixel_x)); //定义视差矩阵,所有值均为水平视差,方便转换为三维坐标,并具有水平距离信息
Mat threed_pixel_xyz, threedImage;
reprojectImageTo3D(disp_matrix, threedImage, q, false); //2d->3d
threed_pixel_xyz = threedImage.mul(threedImage); //每一像素点求平方,
std::vector<Mat> channels;
split(threed_pixel_xyz.clone(), channels);
threed_pixel_xyz = channels[0] + channels[1] + channels[2]; //计算欧式距离
threed_pixel_xyz.forEach<float>([](float &value, const int *position) { value = sqrt(value); }); // 获得距离d
int mid_pixel = int((x1 + x2) / 2);
std::vector<float> mid = pic2cam(imgGrayR.cols / 2, imgGrayR.rows); //计算角度,从像素坐标转为相机坐标
std::vector<float> loc_tar = pic2cam(mid_pixel, imgGrayR.rows);
float alfa = atan((loc_tar[0] - mid[0]) / q.at<double>(2, 3));
if (disp_pixel_x > 240) // 距离太近,视差过大
{
char cm[15];
//sprintf(cm, "cannot match !");
sprintf(cm, "%d , %.2f", cls,Conf);
putText(imgR, cm, Point((x1), (y1)), FONT_HERSHEY_PLAIN, 2.2, Scalar(0, 0, 255), 2);
infoRow = (Mat_<float>(1, 4) << -1, -1, -1, -1);
infoRow.copyTo(info.row(i));
continue;
}
else
{
float median = threed_pixel_xyz.at<float>((int)(y1 + y2) / 2, (int)(x1 + x2) / 2);
std::vector<float> ltPoint = pic2cam(x1, y1);
std::vector<float> rbPoint = pic2cam(x2, y2);
float xx1 = ltPoint[0], yy1 = ltPoint[1], xx2 = rbPoint[0], yy2 = rbPoint[1]; //计算宽高
float f = q.at<double>(2, 3);
float f1 = sqrt(xx1 * xx1 + yy1 * yy1 + f * f); //推导得出
//float w1 = median * sqrt((xx1 - xx2) * (xx1 - xx2) / 4) / f1;
float h1 = median * sqrt((yy1 - yy2) * (yy1 - yy2) / 4) / f1;
float f2 = sqrt(xx2 * xx2 + yy2 * yy2 + f * f);
//float w2 = median * sqrt((xx2 - xx1) * (xx2 - xx1) / 4) / f2;
float h2 = median * sqrt((yy2 - yy1) * (yy2 - yy1) / 4) / f2;
float w1 = sqrt(pow((threedImage.at<cv::Vec3f>(y2, x1)[0] - threedImage.at<cv::Vec3f>(y2, x2)[0]), 2) +
pow((threedImage.at<cv::Vec3f>(y2, x1)[1] - threedImage.at<cv::Vec3f>(y2, x2)[1]), 2) +
pow((threedImage.at<cv::Vec3f>(y2, x1)[2] - threedImage.at<cv::Vec3f>(y2, x2)[2]), 2));
w1 = w1 / 10;
h1 = (h1 + h2) / 10;
median /= 10;
if (median > 120) //过远测距误差较大
{
//char tf[9];
//sprintf(tf, "Too far!");
char cm[15];
//sprintf(cm, "cannot match !");
sprintf(cm, "%d , %.2f", cls,Conf);
putText(imgR, cm, Point((x1), (y1)), FONT_HERSHEY_PLAIN, 2.2, Scalar(0, 0, 255), 2);
infoRow = (Mat_<float>(1, 4) << -1, -1, -1, -1);
infoRow.copyTo(info.row(i));
continue;
}
// <20><>ͼ<EFBFBD><CDBC><EFBFBD>ϻ<EFBFBD><CFBB><EFBFBD><EFBFBD><EFBFBD>Ϣ
char dc[50], wh[50];
std::string cname = className[cls + 1];
sprintf(dc, "dis:%.2fcm %d", median, cls);
sprintf(wh, "W: %.2fcm H: %.2fcm alfa: %2f", w1, h1, alfa);
putText(imgR, dc, Point(x1, y2), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 2);
putText(imgR, wh, Point(x1, y1), FONT_HERSHEY_PLAIN, 1.5, Scalar(0, 0, 255), 1.5);
//返回数据
infoRow = (Mat_<float>(1, 4) << median, w1, h1, alfa);
infoRow.copyTo(info.row(i));
};
}
}
Ranging::Ranging(int index, int imgw, int imgh) : //初始化
mapX1(imgh, imgw, CV_64F), //初始化矩阵 ,用于计算无畸变和修正转换映射。
mapX2(imgh, imgw, CV_64F),
mapY1(imgh, imgw, CV_64F),
mapY2(imgh, imgw, CV_64F),
q(4, 4, CV_64F),
imgw(imgw),
imgh(imgh)
{
// Z = Mat::zeros(2, 1, CV_32FC1);
if (!vcapture.open(index))
{
std::cout << "Open camera failed !" << std::endl;
exit(EXIT_FAILURE);
}
else
{
//vcapture.set(CAP_PROP_FOURCC, CAP_OPENCV_MJPEG);
vcapture.set(CAP_PROP_FPS, 30);
vcapture.set(CAP_PROP_FRAME_WIDTH, imgw * 2);
vcapture.set(CAP_PROP_FRAME_HEIGHT, imgh);
vcapture.set(CAP_PROP_BUFFERSIZE, 1);
auto imgSize = Size(imgw, imgh);
Mat r1(3, 3, CV_64F), r2(3, 3, CV_64F), p1(3, 4, CV_64F), p2(3, 4, CV_64F);
stereoRectify(cam_matrix_left.t(), distortion_l, cam_matrix_right.t(), distortion_r,
imgSize, rotate.t(), trans, r1, r2, p1, p2, q);//立体校正
initUndistortRectifyMap(cam_matrix_left.t(), distortion_l, r1, p1, imgSize, CV_32F, mapX1, mapX2);//计算无畸变和修正转换映射
initUndistortRectifyMap(cam_matrix_right.t(), distortion_r, r2, p2, imgSize, CV_32F, mapY1, mapY2);//计算无畸变和修正转换映射
RKNN_Create(&hdx, modelPath); // 初始化检测模型
std::cout<< " ******************* CAMERA initialization ********************" << std::endl;
}
}
// std::vector<float> Ranging::pic2cam(int u, int v) //像素坐标转相机坐标
// {
// std::vector<float> loc;
// loc.push_back((u - cam_matrix_right.at<double>(0, 2)) * q.at<double>(2, 3) / cam_matrix_right.at<double>(0, 0));
// loc.push_back((v - cam_matrix_right.at<double>(1, 2)) * q.at<double>(2, 3) / cam_matrix_right.at<double>(1, 1));
// return loc;
// }
std::vector<Mat> Ranging::get_range()
{
double rang_old, rang_now;
rang_old = ros::Time::now().toSec(); //测试运行时间
Mat frame, lframe, rframe;
vcapture.read(frame); //获取视频帧
if (!frame.empty())
{
int64 t = getTickCount();
Mat lframe(frame.colRange(0, imgw).clone()); //拷贝左图
Mat rframe(frame.colRange(imgw, imgw * 2).clone()); //拷贝右图
//imshow("lframe",lframe);
//waitKey(1);
rectifyImage(lframe, rframe); //
DetRet *det_ret = NULL; //
InputData input_data; //定义输入数据
int shape[4] = {1, 3, rframe.rows, rframe.cols}, det_num = 0;
memcpy(input_data.shape, shape, sizeof(shape));
Mat Rframe = rframe.clone();
double detect_old, detect_now;
detect_old = ros::Time::now().toSec();
input_data.data = Rframe.data;
//std::cout<<"Rframe.data.shape"<<Rframe.rows<<std::endl;
RKNN_ObjDet(hdx, &input_data, &det_ret, &det_num);
detect_now = ros::Time::now().toSec();
//cout << "data_detect_time:" << detect_now-detect_old << endl;
//std::cout<<"det_num "<<det_num<<std::endl;
if (!det_num)
{
//std::cout<<"return NULL"<<std::endl;
return std::vector<Mat>{rframe}; //没有检测框时,退出
}
std::cout << "det_num: " << det_num << std::endl;
// detction box transfor to our format
Mat detBoxes(det_num, 6, CV_32F); //定义矩阵,存储目标检测内容,存储格式(x,y,x,y,conf,cls)
for (int i = 0; i < det_num; i++) //存储目标检测内容 (x,y,x,y,conf,cls)
{
DetRet det_result = det_ret[i];
// xyxy conf cls
float xmin = rframe.cols * det_result.fLeft;
float ymin = rframe.rows * det_result.fTop;
float xmax = rframe.cols * det_result.fRight;
float ymax = rframe.rows * det_result.fBottom;
detBoxes.at<float>(i, 0) = xmin;
detBoxes.at<float>(i, 1) = ymin;
detBoxes.at<float>(i, 2) = xmax;
detBoxes.at<float>(i, 3) = ymax;
detBoxes.at<float>(i, 4) = det_result.fConf;
// 实验测试,过滤过大的误检框
float ratio = (xmax - xmin) * (ymax - ymin) / 308480.;
if (ratio > 0.7)
{
detBoxes.at<float>(i, 5) = -1;
continue;
}
detBoxes.at<float>(i, 5) = det_result.nLabel;
if (det_result.nLabel == 1 || det_result.nLabel == 2) //检测目标为体重秤和风扇底座时,将目标框拉高,使杆子的雷达点能与目标框对应
{
detBoxes.at<float>(i, 1) = 100;
}
}
Mat info(det_num, 4, CV_32F); // 存储测距信息存储格式距离d宽w高h角度α
if (det_num)
{
// double rang_old, rang_now;
// rang_old = ros::Time::now().toSec();
getInfo(lframe, rframe, detBoxes, info);
// rang_now = ros::Time::now().toSec();
// cout << "data_dis_time: " << rang_now-rang_old << endl;
}
t = getTickCount() - t;
char fps[50];
sprintf(fps, "fps: %d", int(1 / (t / getTickFrequency())));
putText(rframe, fps, Point(20, 20), FONT_HERSHEY_PLAIN, 1, Scalar(0, 0, 255), 1.5);
// rang_now = ros::Time::now().toSec();
// cout << "data_rang_time" << rang_now - rang_old << endl;
return std::vector<Mat>{rframe, detBoxes, info};
}
return std::vector<Mat>{rframe};
}