/** * @file lipkg.cpp * @author LD Robot * @version V01 * @brief * @note * @attention COPYRIGHT LDROBOT **/ #include "lidar.h" #include #include // #ifdef USE_SLBI // #include "slbi.h" // #endif // #ifdef USE_SLBF // #include "slbf.h" // #endif //#define ANGLE_TO_RADIAN(angle) ((angle)*3141.59/180000) #define MAX_ACK_BUF_LEN 2304000 #define ANGLE_TO_RADIAN(angle) ((angle)*3141.59 / 180000) static const uint8_t CrcTable[256] = { 0x00, 0x4d, 0x9a, 0xd7, 0x79, 0x34, 0xe3, 0xae, 0xf2, 0xbf, 0x68, 0x25, 0x8b, 0xc6, 0x11, 0x5c, 0xa9, 0xe4, 0x33, 0x7e, 0xd0, 0x9d, 0x4a, 0x07, 0x5b, 0x16, 0xc1, 0x8c, 0x22, 0x6f, 0xb8, 0xf5, 0x1f, 0x52, 0x85, 0xc8, 0x66, 0x2b, 0xfc, 0xb1, 0xed, 0xa0, 0x77, 0x3a, 0x94, 0xd9, 0x0e, 0x43, 0xb6, 0xfb, 0x2c, 0x61, 0xcf, 0x82, 0x55, 0x18, 0x44, 0x09, 0xde, 0x93, 0x3d, 0x70, 0xa7, 0xea, 0x3e, 0x73, 0xa4, 0xe9, 0x47, 0x0a, 0xdd, 0x90, 0xcc, 0x81, 0x56, 0x1b, 0xb5, 0xf8, 0x2f, 0x62, 0x97, 0xda, 0x0d, 0x40, 0xee, 0xa3, 0x74, 0x39, 0x65, 0x28, 0xff, 0xb2, 0x1c, 0x51, 0x86, 0xcb, 0x21, 0x6c, 0xbb, 0xf6, 0x58, 0x15, 0xc2, 0x8f, 0xd3, 0x9e, 0x49, 0x04, 0xaa, 0xe7, 0x30, 0x7d, 0x88, 0xc5, 0x12, 0x5f, 0xf1, 0xbc, 0x6b, 0x26, 0x7a, 0x37, 0xe0, 0xad, 0x03, 0x4e, 0x99, 0xd4, 0x7c, 0x31, 0xe6, 0xab, 0x05, 0x48, 0x9f, 0xd2, 0x8e, 0xc3, 0x14, 0x59, 0xf7, 0xba, 0x6d, 0x20, 0xd5, 0x98, 0x4f, 0x02, 0xac, 0xe1, 0x36, 0x7b, 0x27, 0x6a, 0xbd, 0xf0, 0x5e, 0x13, 0xc4, 0x89, 0x63, 0x2e, 0xf9, 0xb4, 0x1a, 0x57, 0x80, 0xcd, 0x91, 0xdc, 0x0b, 0x46, 0xe8, 0xa5, 0x72, 0x3f, 0xca, 0x87, 0x50, 0x1d, 0xb3, 0xfe, 0x29, 0x64, 0x38, 0x75, 0xa2, 0xef, 0x41, 0x0c, 0xdb, 0x96, 0x42, 0x0f, 0xd8, 0x95, 0x3b, 0x76, 0xa1, 0xec, 0xb0, 0xfd, 0x2a, 0x67, 0xc9, 0x84, 0x53, 0x1e, 0xeb, 0xa6, 0x71, 0x3c, 0x92, 0xdf, 0x08, 0x45, 0x19, 0x54, 0x83, 0xce, 0x60, 0x2d, 0xfa, 0xb7, 0x5d, 0x10, 0xc7, 0x8a, 0x24, 0x69, 0xbe, 0xf3, 0xaf, 0xe2, 0x35, 0x78, 0xd6, 0x9b, 0x4c, 0x01, 0xf4, 0xb9, 0x6e, 0x23, 0x8d, 0xc0, 0x17, 0x5a, 0x06, 0x4b, 0x9c, 0xd1, 0x7f, 0x32, 0xe5, 0xa8}; CmdInterfaceLinux::CmdInterfaceLinux(int32_t ver) : mRxThread(nullptr), mRxCount(0), mReadCallback(nullptr), version(ver) { mComHandle = -1; } CmdInterfaceLinux::~CmdInterfaceLinux() { Close(); } bool CmdInterfaceLinux::Open(std::string &port_name) { int flags = (O_RDWR | O_NOCTTY | O_NONBLOCK); mComHandle = open(port_name.c_str(), flags); if (-1 == mComHandle) { std::cout << "CmdInterfaceLinux::Open " << port_name << " error !" << std::endl; return false; } // get port options struct termios options; if (-1 == tcgetattr(mComHandle, &options)) { Close(); std::cout << "CmdInterfaceLinux::Open tcgetattr error!" << std::endl; return false; } options.c_cflag |= (tcflag_t)(CLOCAL | CREAD | CS8 | CRTSCTS); options.c_cflag &= (tcflag_t) ~(CSTOPB | PARENB | PARODD); options.c_lflag &= (tcflag_t) ~(ICANON | ECHO | ECHOE | ECHOK | ECHONL | ISIG | IEXTEN); //|ECHOPRT options.c_oflag &= (tcflag_t) ~(OPOST); options.c_iflag &= (tcflag_t) ~(IXON | IXOFF | INLCR | IGNCR | ICRNL | IGNBRK); options.c_cc[VMIN] = 0; options.c_cc[VTIME] = 0; switch (version) { case 0: cfsetispeed(&options, B115200); break; case 3: cfsetispeed(&options, B115200); break; case 6: cfsetispeed(&options, B230400); break; case 8: cfsetispeed(&options, B115200); break; case 14: cfsetispeed(&options, B115200); break; default: cfsetispeed(&options, B115200); } if (tcsetattr(mComHandle, TCSANOW, &options) < 0) { std::cout << "CmdInterfaceLinux::Open tcsetattr error!" << std::endl; Close(); return false; } tcflush(mComHandle, TCIFLUSH); mRxThreadExitFlag = false; mRxThread = new std::thread(mRxThreadProc, this); mIsCmdOpened = true; return true; } bool CmdInterfaceLinux::Close() { if (mIsCmdOpened == false) { return true; } mRxThreadExitFlag = true; if (mComHandle != -1) { close(mComHandle); mComHandle = -1; } if ((mRxThread != nullptr) && mRxThread->joinable()) { mRxThread->join(); delete mRxThread; mRxThread = NULL; } mIsCmdOpened = false; return true; } bool CmdInterfaceLinux::GetCmdDevices(std::vector> &device_list) { struct udev *udev; struct udev_enumerate *enumerate; struct udev_list_entry *devices, *dev_list_entry; struct udev_device *dev; udev = udev_new(); if (!udev) { return false; } enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_subsystem(enumerate, "tty"); udev_enumerate_scan_devices(enumerate); devices = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devices) { const char *path; path = udev_list_entry_get_name(dev_list_entry); dev = udev_device_new_from_syspath(udev, path); std::string dev_path = std::string(udev_device_get_devnode(dev)); dev = udev_device_get_parent_with_subsystem_devtype(dev, "usb", "usb_device"); if (dev) { std::pair p; p.first = dev_path; p.second = udev_device_get_sysattr_value(dev, "product"); device_list.push_back(p); udev_device_unref(dev); } else { continue; } } udev_enumerate_unref(enumerate); udev_unref(udev); return true; } bool CmdInterfaceLinux::ReadFromIO(uint8_t *rx_buf, uint32_t rx_buf_len, uint32_t *rx_len) { static timespec timeout = {0, (long)(100 * 1e6)}; int32_t len = -1; if (IsOpened()) { fd_set read_fds; FD_ZERO(&read_fds); FD_SET(mComHandle, &read_fds); int r = pselect(mComHandle + 1, &read_fds, NULL, NULL, &timeout, NULL); if (r < 0) { // Select was interrupted if (errno == EINTR) { return false; } } else if (r == 0) // timeout { return false; } if (FD_ISSET(mComHandle, &read_fds)) { len = (int32_t)read(mComHandle, rx_buf, rx_buf_len); if ((len != -1) && rx_len) { *rx_len = len; } } } return len == -1 ? false : true; } bool CmdInterfaceLinux::WriteToIo(const uint8_t *tx_buf, uint32_t tx_buf_len, uint32_t *tx_len) { int32_t len = -1; if (IsOpened()) { len = (int32_t)write(mComHandle, tx_buf, tx_buf_len); if ((len != -1) && tx_len) { *tx_len = len; } } return len == -1 ? false : true; } void CmdInterfaceLinux::mRxThreadProc(void *param) { CmdInterfaceLinux *cmd_if = (CmdInterfaceLinux *)param; char *rx_buf = new char[MAX_ACK_BUF_LEN + 1]; uchar failedNum = 0; while (!cmd_if->mRxThreadExitFlag.load()) { uint32_t readed = 0; bool res = cmd_if->ReadFromIO((uint8_t *)rx_buf, MAX_ACK_BUF_LEN, &readed); if (res && readed) { cmd_if->mRxCount += readed; if (cmd_if->mReadCallback != nullptr) { cmd_if->mReadCallback(rx_buf, readed); } failedNum = 0; } else { if(++failedNum == 255) break; } } cmd_if->mRxThreadExitFlag = true; delete[] rx_buf; } LiPkg::LiPkg() : mTimestamp(0), mSpeed(0), mErrorTimes(0), mIsFrameReady(false), mIsPkgReady(false) { } double LiPkg::GetSpeed(void) { return mSpeed / 360.0; } bool LiPkg::Parse(const uint8_t *data, long len) { for (int i = 0; i < len; i++) { mDataTmp.push_back(*(data + i)); } if (mDataTmp.size() < sizeof(LiDARFrameTypeDef)) return false; if (mDataTmp.size() > sizeof(LiDARFrameTypeDef) * 100) { mErrorTimes++; mDataTmp.clear(); return false; } uint16_t start = 0; while (start < mDataTmp.size() - 2) { start = 0; while (start < mDataTmp.size() - 2) { if ((mDataTmp[start] == PKG_HEADER) && (mDataTmp[start + 1] == PKG_VER_LEN)) { break; } if ((mDataTmp[start] == PKG_HEADER) && (mDataTmp[start + 1] == (PKG_VER_LEN | (0x07 << 5)))) { break; } start++; } if (start != 0) { mErrorTimes++; for (int i = 0; i < start; i++) { mDataTmp.erase(mDataTmp.begin()); } } if (mDataTmp.size() < sizeof(LiDARFrameTypeDef)) return false; LiDARFrameTypeDef *pkg = (LiDARFrameTypeDef *)mDataTmp.data(); uint8_t crc = 0; for (uint32_t i = 0; i < sizeof(LiDARFrameTypeDef) - 1; i++) { crc = CrcTable[(crc ^ mDataTmp[i]) & 0xff]; } if (crc == pkg->crc8) { double diff = (pkg->end_angle / 100 - pkg->start_angle / 100 + 360) % 360; if (diff > (double)pkg->speed * POINT_PER_PACK / 2300 * 3 / 2) { mErrorTimes++; } else { mSpeed = pkg->speed; mTimestamp = pkg->timestamp; uint32_t diff = ((uint32_t)pkg->end_angle + 36000 - (uint32_t)pkg->start_angle) % 36000; float step = diff / (POINT_PER_PACK - 1) / 100.0; float start = (double)pkg->start_angle / 100.0; float end = (double)(pkg->end_angle % 36000) / 100.0; PointData data; for (int i = 0; i < POINT_PER_PACK; i++) { data.distance = pkg->point[i].distance; data.angle = start + i * step; if (data.angle >= 360.0) { data.angle -= 360.0; } data.confidence = pkg->point[i].confidence; mOnePkg[i] = data; mFrameTemp.push_back(PointData(data.angle, data.distance, data.confidence)); } // prevent angle invert mOnePkg.back().angle = end; mIsPkgReady = true; } for (uint32_t i = 0; i < sizeof(LiDARFrameTypeDef); i++) { mDataTmp.erase(mDataTmp.begin()); } if (mDataTmp.size() < sizeof(LiDARFrameTypeDef)) { break; } } else { mErrorTimes++; /*only remove header,not all frame,because lidar data may contain head*/ for (int i = 0; i < 2; i++) { mDataTmp.erase(mDataTmp.begin()); } } } return true; } bool LiPkg::AssemblePacket() { float last_angle = 0; std::vector tmp; int count = 0; for (auto n : mFrameTemp) { /*wait for enough data, need enough data to show a circle*/ if (n.angle - last_angle < (-350.f)) /* enough data has been obtained */ { mFrameData.len = tmp.size(); Transform(tmp); /*transform raw data to stantard data */ if (tmp.size() == 0) { mFrameTemp.clear(); mIsFrameReady = false; return false; } #ifdef USE_SLBI Slbi sb(mSpeed); sb.FindBarcode(tmp); #endif #ifdef USE_SLBF Slbf sb(mSpeed); tmp = sb.NearFilter(tmp); #endif std::sort(tmp.begin(), tmp.end(), [](PointData a, PointData b) { return a.angle < b.angle; }); mFrameData.angle_min = tmp[0].angle; mFrameData.angle_max = tmp.back().angle; mFrameData.distance.clear(); mFrameData.intensities.clear(); mFrameData.distance.resize(mFrameData.len); mFrameData.intensities.resize(mFrameData.len); float step = (mFrameData.angle_max - mFrameData.angle_min) / mFrameData.len; float angle_acc = mFrameData.angle_min; int tmp_count = 0; /* interpolation method */ for (uint32_t i = 0; i < mFrameData.len; i++) { if (angle_acc >= tmp[tmp_count].angle) { mFrameData.distance[i] = tmp[tmp_count].distance; mFrameData.intensities[i] = tmp[tmp_count].confidence; tmp_count++; if (tmp_count == tmp.size()) { break; } } else { mFrameData.distance[i] = 0; mFrameData.intensities[i] = 0; } angle_acc += step; } std::vector tmp2; for (uint32_t i = count; i < mFrameTemp.size(); i++) { tmp2.push_back(mFrameTemp[i]); } mFrameTemp.clear(); mFrameTemp = tmp2; mIsFrameReady = true; return true; } else { tmp.push_back(n); /* getting data */ } count++; last_angle = n.angle; } return false; } const std::array &LiPkg::GetPkgData(void) { mIsPkgReady = false; return mOnePkg; } std::vector LiPkg::scan_to_pointcloud(FrameData mFrameData) { u_int32_t len = mFrameData.len; float angle_min = ANGLE_TO_RADIAN(mFrameData.angle_min); float angle_max = ANGLE_TO_RADIAN(mFrameData.angle_max); cv::Mat pointcloud2(len, 3, CV_32F); cv::Mat intensities(1, len, CV_32F); cv::Mat pointdis(1, len, CV_32F); float a_increment = (angle_max - angle_min) / (float)(len - 1); for (int i = 0; i < len; i++) { float dis = mFrameData.distance[i] / 1000.f; intensities.at(0, i) = mFrameData.intensities[i]; pointdis.at(0, i) = dis; float x_temp = cos(angle_min + i * a_increment) * dis; float y_temp = sin(angle_min + i * a_increment) * dis; pointcloud2.at(i, 0) = x_temp; pointcloud2.at(i, 1) = y_temp; pointcloud2.at(i, 2) = 0.0; } return std::vector{pointcloud2, intensities, pointdis}; } /********************* (C) COPYRIGHT LD Robot *******END OF FILE ********/ SlTransform::SlTransform(LDVersion version, bool to_right_hand) { switch (version) { case LDVersion::LD_ZERO: case LDVersion::LD_NINE: offset_x = 8.1; offset_y = -22.5156; break; case LDVersion::LD_THREE: case LDVersion::LD_EIGHT: offset_x = 5.9; offset_y = -20.14; break; case LDVersion::LD_FOURTEENTH: offset_x = 5.9; offset_y = -20.14; break; default: break; } } Points2D SlTransform::Transform(const Points2D &data) { Points2D tmp2; for (auto n : data) { /*Filter out invalid data*/ if (n.distance == 0) { continue; } /*transfer the origin to the center of lidar circle*/ /*The default direction of radar rotation is clockwise*/ /*transfer to the right-hand coordinate system*/ float right_hand = (360.f - n.angle); double x = n.distance + offset_x; double y = n.distance * 0.11923 + offset_y; double d = sqrt(x * x + y * y); double shift = atan(y / x) * 180.f / 3.14159; /*Choose whether to use the right-hand system according to the flag*/ double angle; if (to_right_hand) angle = right_hand + shift; else angle = n.angle - shift; if (angle > 360) { angle -= 360; } if (angle < 0) { angle += 360; } tmp2.push_back(PointData(angle, n.distance, n.confidence, x, y)); } return tmp2; } SlTransform::~SlTransform() { } void LD14_LiPkg::Transform(std::vector &tmp) { SlTransform trans(LDVersion::LD_FOURTEENTH); tmp = trans.Transform(tmp); // std::cout << "Transform LD_FOURTEENTH !!" << std::endl; }