Example-Research-COAT/Code/Python/loss/oim.py

77 lines
2.8 KiB
Python
Raw Normal View History

2024-10-03 01:04:42 +08:00
# This file is part of COAT, and is distributed under the
# OSI-approved BSD 3-Clause License. See top-level LICENSE file or
# https://github.com/Kitware/COAT/blob/master/LICENSE for details.
import torch
import torch.nn.functional as F
from torch import autograd, nn
class OIM(autograd.Function):
@staticmethod
def forward(ctx, inputs, targets, lut, cq, header, momentum):
ctx.save_for_backward(inputs, targets, lut, cq, header, momentum)
outputs_labeled = inputs.mm(lut.t())
outputs_unlabeled = inputs.mm(cq.t())
return torch.cat([outputs_labeled, outputs_unlabeled], dim=1)
@staticmethod
def backward(ctx, grad_outputs):
inputs, targets, lut, cq, header, momentum = ctx.saved_tensors
grad_inputs = None
if ctx.needs_input_grad[0]:
grad_inputs = grad_outputs.mm(torch.cat([lut, cq], dim=0))
if grad_inputs.dtype == torch.float16:
grad_inputs = grad_inputs.to(torch.float32)
for x, y in zip(inputs, targets):
if y < len(lut):
lut[y] = momentum * lut[y] + (1.0 - momentum) * x
lut[y] /= lut[y].norm()
else:
cq[header] = x
header = (header + 1) % cq.size(0)
return grad_inputs, None, None, None, None, None
def oim(inputs, targets, lut, cq, header, momentum=0.5):
return OIM.apply(inputs, targets, lut, cq, torch.tensor(header), torch.tensor(momentum))
class OIMLoss(nn.Module):
def __init__(self, num_features, num_pids, num_cq_size, oim_momentum, oim_scalar):
super(OIMLoss, self).__init__()
self.num_features = num_features
self.num_pids = num_pids
self.num_unlabeled = num_cq_size
self.momentum = oim_momentum
self.oim_scalar = oim_scalar
self.register_buffer("lut", torch.zeros(self.num_pids, self.num_features))
self.register_buffer("cq", torch.zeros(self.num_unlabeled, self.num_features))
self.header_cq = 0
def forward(self, inputs, roi_label):
# merge into one batch, background label = 0
targets = torch.cat(roi_label)
label = targets - 1 # background label = -1
inds = label >= 0
label = label[inds]
inputs = inputs[inds.unsqueeze(1).expand_as(inputs)].view(-1, self.num_features)
projected = oim(inputs, label, self.lut, self.cq, self.header_cq, momentum=self.momentum)
# projected - Tensor [M, lut+cq], e.g., [M, 482+500]=[M, 982]
projected *= self.oim_scalar
self.header_cq = (
self.header_cq + (label >= self.num_pids).long().sum().item()
) % self.num_unlabeled
loss_oim = F.cross_entropy(projected, label, ignore_index=5554)
return loss_oim, inputs, label