from resnet import build_resnet import cv2 import torchvision.transforms as transforms backbone, _ = build_resnet(name="resnet50", pretrained=True) # 读取测试图像 image = cv2.imread('E:/DeepLearning/PersonSearch/COAT/COAT/main/backbone/test.jpg') # 替换为您的测试图像文件路径 image = cv2.resize(image, (224, 224)) # 使用 OpenCV 显示原始图像 cv2.imshow("Original Image", image) cv2.waitKey(0) cv2.destroyAllWindows() # 创建转换以将图像缩放到 224x224 大小并转换为张量 transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor(), ]) # 应用转换并将图像转换为张量 image_tensor = transform(image) image_tensor = image_tensor.unsqueeze(0) # 添加批次维度,将形状变为 [1, 3, 224, 224] # 使用模型进行推理 output = backbone(image_tensor) # 输入的shape是[1,1024,7,7] #print(output) print(output['feat_res4'].shape) # 在这里,您可以处理模型的输出,进行后续的操作或分析