403 lines
16 KiB
Python
403 lines
16 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from functools import partial
|
||
from collections import OrderedDict
|
||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||
from mmengine.runner import load_checkpoint
|
||
import math
|
||
|
||
|
||
class Mlp(nn.Module):
|
||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=1., linear=False):
|
||
super().__init__()
|
||
out_features = out_features or in_features
|
||
hidden_features = hidden_features or in_features
|
||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||
self.dwconv = DWConv(hidden_features)
|
||
self.act = act_layer()
|
||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||
self.drop = nn.Dropout(drop)
|
||
self.linear = linear
|
||
if self.linear:
|
||
self.relu = nn.ReLU(inplace=True)
|
||
self.apply(self._init_weights)
|
||
|
||
def _init_weights(self, m):
|
||
if isinstance(m, nn.Linear):
|
||
trunc_normal_(m.weight, std=.02)
|
||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||
nn.init.constant_(m.bias, 0)
|
||
elif isinstance(m, nn.LayerNorm):
|
||
nn.init.constant_(m.bias, 0)
|
||
nn.init.constant_(m.weight, 1.0)
|
||
elif isinstance(m, nn.Conv2d):
|
||
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||
fan_out //= m.groups
|
||
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||
if m.bias is not None:
|
||
m.bias.data.zero_()
|
||
|
||
def forward(self, x, H, W):
|
||
x = self.fc1(x)
|
||
if self.linear:
|
||
x = self.relu(x)
|
||
x = self.dwconv(x, H, W)
|
||
x = self.act(x)
|
||
x = self.drop(x)
|
||
x = self.fc2(x)
|
||
x = self.drop(x)
|
||
return x
|
||
|
||
|
||
class Attention(nn.Module):
|
||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False):
|
||
super().__init__()
|
||
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
||
|
||
self.dim = dim
|
||
self.num_heads = num_heads
|
||
head_dim = dim // num_heads
|
||
self.scale = qk_scale or head_dim ** -0.5
|
||
|
||
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
||
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
||
self.attn_drop = nn.Dropout(attn_drop)
|
||
self.proj = nn.Linear(dim, dim)
|
||
self.proj_drop = nn.Dropout(proj_drop)
|
||
|
||
self.linear = linear
|
||
self.sr_ratio = sr_ratio
|
||
if not linear:
|
||
if sr_ratio > 1:
|
||
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
||
self.norm = nn.LayerNorm(dim)
|
||
else:
|
||
self.pool = nn.AdaptiveAvgPool2d(7)
|
||
self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
|
||
self.norm = nn.LayerNorm(dim)
|
||
self.act = nn.GELU()
|
||
self.apply(self._init_weights)
|
||
|
||
def _init_weights(self, m):
|
||
if isinstance(m, nn.Linear):
|
||
trunc_normal_(m.weight, std=.02)
|
||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||
nn.init.constant_(m.bias, 0)
|
||
elif isinstance(m, nn.LayerNorm):
|
||
nn.init.constant_(m.bias, 0)
|
||
nn.init.constant_(m.weight, 1.0)
|
||
elif isinstance(m, nn.Conv2d):
|
||
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||
fan_out //= m.groups
|
||
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||
if m.bias is not None:
|
||
m.bias.data.zero_()
|
||
|
||
def forward(self, x, H, W):
|
||
B, N, C = x.shape
|
||
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||
|
||
if not self.linear:
|
||
if self.sr_ratio > 1:
|
||
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
||
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
||
x_ = self.norm(x_)
|
||
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||
else:
|
||
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||
else:
|
||
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
||
x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1)
|
||
x_ = self.norm(x_)
|
||
x_ = self.act(x_)
|
||
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||
k, v = kv[0], kv[1]
|
||
|
||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||
attn = attn.softmax(dim=-1)
|
||
attn = self.attn_drop(attn)
|
||
|
||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||
x = self.proj(x)
|
||
x = self.proj_drop(x)
|
||
|
||
return x
|
||
|
||
|
||
class Block(nn.Module):
|
||
|
||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False):
|
||
super().__init__()
|
||
self.norm1 = norm_layer(dim)
|
||
self.attn = Attention(
|
||
dim,
|
||
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear)
|
||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||
self.norm2 = norm_layer(dim)
|
||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear)
|
||
|
||
self.apply(self._init_weights)
|
||
|
||
def _init_weights(self, m):
|
||
if isinstance(m, nn.Linear):
|
||
trunc_normal_(m.weight, std=.02)
|
||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||
nn.init.constant_(m.bias, 0)
|
||
elif isinstance(m, nn.LayerNorm):
|
||
nn.init.constant_(m.bias, 0)
|
||
nn.init.constant_(m.weight, 1.0)
|
||
elif isinstance(m, nn.Conv2d):
|
||
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||
fan_out //= m.groups
|
||
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||
if m.bias is not None:
|
||
m.bias.data.zero_()
|
||
|
||
def forward(self, x, H, W):
|
||
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
||
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
||
|
||
return x
|
||
|
||
|
||
class OverlapPatchEmbed(nn.Module):
|
||
""" Image to Patch Embedding
|
||
"""
|
||
|
||
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
||
super().__init__()
|
||
img_size = to_2tuple(img_size)
|
||
patch_size = to_2tuple(patch_size)
|
||
|
||
assert max(patch_size) > stride, "Set larger patch_size than stride"
|
||
|
||
self.img_size = img_size
|
||
self.patch_size = patch_size
|
||
self.H, self.W = img_size[0] // stride, img_size[1] // stride
|
||
self.num_patches = self.H * self.W
|
||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
||
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
||
self.norm = nn.LayerNorm(embed_dim)
|
||
|
||
self.apply(self._init_weights)
|
||
|
||
def _init_weights(self, m):
|
||
if isinstance(m, nn.Linear):
|
||
trunc_normal_(m.weight, std=.02)
|
||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||
nn.init.constant_(m.bias, 0)
|
||
elif isinstance(m, nn.LayerNorm):
|
||
nn.init.constant_(m.bias, 0)
|
||
nn.init.constant_(m.weight, 1.0)
|
||
elif isinstance(m, nn.Conv2d):
|
||
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||
fan_out //= m.groups
|
||
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||
if m.bias is not None:
|
||
m.bias.data.zero_()
|
||
|
||
def forward(self, x):
|
||
x = self.proj(x)
|
||
_, _, H, W = x.shape
|
||
x = x.flatten(2).transpose(1, 2)
|
||
x = self.norm(x)
|
||
|
||
return x, H, W
|
||
|
||
|
||
class PyramidVisionTransformerV2(nn.Module):
|
||
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
||
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
||
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3],
|
||
sr_ratios=[8, 4, 2, 1], num_stages=4, linear=False, pretrained=None):
|
||
super().__init__()
|
||
# self.num_classes = num_classes
|
||
self.depths = depths
|
||
self.num_stages = num_stages
|
||
self.linear = linear
|
||
|
||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
||
cur = 0
|
||
|
||
for i in range(num_stages):
|
||
patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
|
||
patch_size=7 if i == 0 else 3,
|
||
stride=4 if i == 0 else 2,
|
||
in_chans=in_chans if i == 0 else embed_dims[i - 1],
|
||
embed_dim=embed_dims[i])
|
||
|
||
block = nn.ModuleList([Block(
|
||
dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
|
||
qk_scale=qk_scale,
|
||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer,
|
||
sr_ratio=sr_ratios[i], linear=linear)
|
||
for j in range(depths[i])])
|
||
norm = norm_layer(embed_dims[i])
|
||
cur += depths[i]
|
||
|
||
setattr(self, f"patch_embed{i + 1}", patch_embed)
|
||
setattr(self, f"block{i + 1}", block)
|
||
setattr(self, f"norm{i + 1}", norm)
|
||
|
||
# classification head
|
||
# self.head实际就是个线性模型并未使用,删除后模型在加载pth会有警告
|
||
# 下面代码是否注释影响不大
|
||
self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
||
|
||
self.apply(self._init_weights)
|
||
self.init_weights(pretrained)
|
||
|
||
def _init_weights(self, m):
|
||
if isinstance(m, nn.Linear):
|
||
trunc_normal_(m.weight, std=.02)
|
||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||
nn.init.constant_(m.bias, 0)
|
||
elif isinstance(m, nn.LayerNorm):
|
||
nn.init.constant_(m.bias, 0)
|
||
nn.init.constant_(m.weight, 1.0)
|
||
elif isinstance(m, nn.Conv2d):
|
||
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||
fan_out //= m.groups
|
||
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||
if m.bias is not None:
|
||
m.bias.data.zero_()
|
||
|
||
def init_weights(self, pretrained=None):
|
||
if isinstance(pretrained, str):
|
||
#logger = get_root_logger()
|
||
load_checkpoint(self, pretrained, map_location='cpu', strict=False)
|
||
|
||
def freeze_patch_emb(self):
|
||
self.patch_embed1.requires_grad = False
|
||
|
||
@torch.jit.ignore
|
||
def no_weight_decay(self):
|
||
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
|
||
|
||
def get_classifier(self):
|
||
return self.head
|
||
|
||
def reset_classifier(self, num_classes, global_pool=''):
|
||
self.num_classes = num_classes
|
||
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||
|
||
def forward_features(self, x):
|
||
B = x.shape[0]
|
||
outs = []
|
||
|
||
for i in range(self.num_stages):
|
||
patch_embed = getattr(self, f"patch_embed{i + 1}")
|
||
block = getattr(self, f"block{i + 1}")
|
||
norm = getattr(self, f"norm{i + 1}")
|
||
x, H, W = patch_embed(x)
|
||
for blk in block:
|
||
x = blk(x, H, W)
|
||
x = norm(x)
|
||
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
||
outs.append(x)
|
||
|
||
return outs
|
||
|
||
|
||
def forward(self, x):
|
||
x = self.forward_features(x)
|
||
# 目标检测的head被原作者删除了
|
||
# x = self.head(x)
|
||
return x
|
||
|
||
|
||
class DWConv(nn.Module):
|
||
def __init__(self, dim=768):
|
||
super(DWConv, self).__init__()
|
||
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
||
|
||
def forward(self, x, H, W):
|
||
B, N, C = x.shape
|
||
x = x.transpose(1, 2).view(B, C, H, W)
|
||
x = self.dwconv(x)
|
||
x = x.flatten(2).transpose(1, 2)
|
||
|
||
return x
|
||
|
||
|
||
def _conv_filter(state_dict, patch_size=16):
|
||
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
||
out_dict = {}
|
||
for k, v in state_dict.items():
|
||
if 'patch_embed.proj.weight' in k:
|
||
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
||
out_dict[k] = v
|
||
|
||
return out_dict
|
||
|
||
class pvt_v2_b0(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b0, self).__init__(
|
||
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, pretrained=kwargs['pretrained'])
|
||
|
||
|
||
class pvt_v2_b1(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b1, self).__init__(
|
||
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, pretrained=kwargs['pretrained'])
|
||
|
||
|
||
class pvt_v2_b2(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b2, self).__init__(
|
||
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, pretrained=kwargs['pretrained'])
|
||
self.out_channels = 512
|
||
|
||
|
||
class pvt_v2_b2_2(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b2_2, self).__init__(
|
||
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, pretrained=kwargs['pretrained'])
|
||
self.out_channels = 512
|
||
def forward(self, x):
|
||
# using the forward method from nn.Sequential
|
||
feat = super(pvt_v2_b2_2, self).forward(x)
|
||
return OrderedDict([["feat_pvt2", feat]])
|
||
|
||
class pvt_v2_b2_li(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b2_li, self).__init__(
|
||
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, linear=True, pretrained=kwargs['pretrained'])
|
||
|
||
|
||
class pvt_v2_b3(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b3, self).__init__(
|
||
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, pretrained=kwargs['pretrained'])
|
||
|
||
class pvt_v2_b4(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b4, self).__init__(
|
||
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, pretrained=kwargs['pretrained'])
|
||
|
||
class pvt_v2_b5(PyramidVisionTransformerV2):
|
||
def __init__(self, **kwargs):
|
||
super(pvt_v2_b5, self).__init__(
|
||
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
||
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
||
drop_rate=0.0, drop_path_rate=0.1, pretrained=kwargs['pretrained'])
|