228 lines
8.8 KiB
C
228 lines
8.8 KiB
C
//=====================================================================================================
|
|
// MadgwickAHRS.c
|
|
//=====================================================================================================
|
|
//
|
|
// Implementation of Madgwick's IMU and AHRS algorithms.
|
|
// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
|
|
//
|
|
// Date Author Notes
|
|
// 29/09/2011 SOH Madgwick Initial release
|
|
// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
|
|
// 19/02/2012 SOH Madgwick Magnetometer measurement is normalised
|
|
//
|
|
//=====================================================================================================
|
|
|
|
//---------------------------------------------------------------------------------------------------
|
|
// Header files
|
|
|
|
#include "MadgwickAHRS.h"
|
|
#include <math.h>
|
|
|
|
//---------------------------------------------------------------------------------------------------
|
|
// Definitions
|
|
|
|
#define sampleFreq 512.0f // sample frequency in Hz
|
|
#define betaDef 0.1f // 2 * proportional gain
|
|
|
|
//---------------------------------------------------------------------------------------------------
|
|
// Variable definitions
|
|
|
|
volatile float beta = betaDef; // 2 * proportional gain (Kp)
|
|
volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
|
|
|
|
//---------------------------------------------------------------------------------------------------
|
|
// Function declarations
|
|
|
|
float invSqrt(float x);
|
|
|
|
//====================================================================================================
|
|
// Functions
|
|
|
|
//---------------------------------------------------------------------------------------------------
|
|
// AHRS algorithm update
|
|
|
|
void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
|
|
float recipNorm;
|
|
float s0, s1, s2, s3;
|
|
float qDot1, qDot2, qDot3, qDot4;
|
|
float hx, hy;
|
|
float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
|
|
|
|
// Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
|
|
if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
|
|
MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az);
|
|
return;
|
|
}
|
|
|
|
// Rate of change of quaternion from gyroscope
|
|
qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
|
|
qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
|
|
qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
|
|
qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
|
|
|
|
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
|
|
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
|
|
|
|
// Normalise accelerometer measurement
|
|
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
|
|
ax *= recipNorm;
|
|
ay *= recipNorm;
|
|
az *= recipNorm;
|
|
|
|
// Normalise magnetometer measurement
|
|
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
|
|
mx *= recipNorm;
|
|
my *= recipNorm;
|
|
mz *= recipNorm;
|
|
|
|
// Auxiliary variables to avoid repeated arithmetic
|
|
_2q0mx = 2.0f * q0 * mx;
|
|
_2q0my = 2.0f * q0 * my;
|
|
_2q0mz = 2.0f * q0 * mz;
|
|
_2q1mx = 2.0f * q1 * mx;
|
|
_2q0 = 2.0f * q0;
|
|
_2q1 = 2.0f * q1;
|
|
_2q2 = 2.0f * q2;
|
|
_2q3 = 2.0f * q3;
|
|
_2q0q2 = 2.0f * q0 * q2;
|
|
_2q2q3 = 2.0f * q2 * q3;
|
|
q0q0 = q0 * q0;
|
|
q0q1 = q0 * q1;
|
|
q0q2 = q0 * q2;
|
|
q0q3 = q0 * q3;
|
|
q1q1 = q1 * q1;
|
|
q1q2 = q1 * q2;
|
|
q1q3 = q1 * q3;
|
|
q2q2 = q2 * q2;
|
|
q2q3 = q2 * q3;
|
|
q3q3 = q3 * q3;
|
|
|
|
// Reference direction of Earth's magnetic field
|
|
hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
|
|
hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
|
|
_2bx = sqrt(hx * hx + hy * hy);
|
|
_2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
|
|
_4bx = 2.0f * _2bx;
|
|
_4bz = 2.0f * _2bz;
|
|
|
|
// Gradient decent algorithm corrective step
|
|
s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
|
|
s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
|
|
s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
|
|
s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
|
|
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
|
|
s0 *= recipNorm;
|
|
s1 *= recipNorm;
|
|
s2 *= recipNorm;
|
|
s3 *= recipNorm;
|
|
|
|
// Apply feedback step
|
|
qDot1 -= beta * s0;
|
|
qDot2 -= beta * s1;
|
|
qDot3 -= beta * s2;
|
|
qDot4 -= beta * s3;
|
|
}
|
|
|
|
// Integrate rate of change of quaternion to yield quaternion
|
|
q0 += qDot1 * (1.0f / sampleFreq);
|
|
q1 += qDot2 * (1.0f / sampleFreq);
|
|
q2 += qDot3 * (1.0f / sampleFreq);
|
|
q3 += qDot4 * (1.0f / sampleFreq);
|
|
|
|
// Normalise quaternion
|
|
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
|
|
q0 *= recipNorm;
|
|
q1 *= recipNorm;
|
|
q2 *= recipNorm;
|
|
q3 *= recipNorm;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------------------------------
|
|
// IMU algorithm update
|
|
|
|
void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
|
|
float recipNorm;
|
|
float s0, s1, s2, s3;
|
|
float qDot1, qDot2, qDot3, qDot4;
|
|
float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
|
|
|
|
// Rate of change of quaternion from gyroscope
|
|
qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
|
|
qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
|
|
qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
|
|
qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
|
|
|
|
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
|
|
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
|
|
|
|
// Normalise accelerometer measurement
|
|
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
|
|
ax *= recipNorm;
|
|
ay *= recipNorm;
|
|
az *= recipNorm;
|
|
|
|
// Auxiliary variables to avoid repeated arithmetic
|
|
_2q0 = 2.0f * q0;
|
|
_2q1 = 2.0f * q1;
|
|
_2q2 = 2.0f * q2;
|
|
_2q3 = 2.0f * q3;
|
|
_4q0 = 4.0f * q0;
|
|
_4q1 = 4.0f * q1;
|
|
_4q2 = 4.0f * q2;
|
|
_8q1 = 8.0f * q1;
|
|
_8q2 = 8.0f * q2;
|
|
q0q0 = q0 * q0;
|
|
q1q1 = q1 * q1;
|
|
q2q2 = q2 * q2;
|
|
q3q3 = q3 * q3;
|
|
|
|
// Gradient decent algorithm corrective step
|
|
s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
|
|
s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
|
|
s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
|
|
s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
|
|
recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
|
|
s0 *= recipNorm;
|
|
s1 *= recipNorm;
|
|
s2 *= recipNorm;
|
|
s3 *= recipNorm;
|
|
|
|
// Apply feedback step
|
|
qDot1 -= beta * s0;
|
|
qDot2 -= beta * s1;
|
|
qDot3 -= beta * s2;
|
|
qDot4 -= beta * s3;
|
|
}
|
|
|
|
// Integrate rate of change of quaternion to yield quaternion
|
|
q0 += qDot1 * (1.0f / sampleFreq);
|
|
q1 += qDot2 * (1.0f / sampleFreq);
|
|
q2 += qDot3 * (1.0f / sampleFreq);
|
|
q3 += qDot4 * (1.0f / sampleFreq);
|
|
|
|
// Normalise quaternion
|
|
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
|
|
q0 *= recipNorm;
|
|
q1 *= recipNorm;
|
|
q2 *= recipNorm;
|
|
q3 *= recipNorm;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------------------------------
|
|
// Fast inverse square-root
|
|
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
|
|
|
|
float invSqrt(float x) {
|
|
float halfx = 0.5f * x;
|
|
float y = x;
|
|
long i = *(long*)&y;
|
|
i = 0x5f3759df - (i>>1);
|
|
y = *(float*)&i;
|
|
y = y * (1.5f - (halfx * y * y));
|
|
return y;
|
|
}
|
|
|
|
//====================================================================================================
|
|
// END OF CODE
|
|
//====================================================================================================
|