ORB-SLAM3-UESTC/Workspace/Thirdparty/Sophus/sophus/sim2.hpp

723 lines
24 KiB
C++
Raw Normal View History

2023-11-28 19:20:25 +08:00
/// @file
/// Similarity group Sim(2) - scaling, rotation and translation in 2d.
#ifndef SOPHUS_SIM2_HPP
#define SOPHUS_SIM2_HPP
#include "rxso2.hpp"
#include "sim_details.hpp"
namespace Sophus {
template <class Scalar_, int Options = 0>
class Sim2;
using Sim2d = Sim2<double>;
using Sim2f = Sim2<float>;
} // namespace Sophus
namespace Eigen {
namespace internal {
template <class Scalar_, int Options>
struct traits<Sophus::Sim2<Scalar_, Options>> {
using Scalar = Scalar_;
using TranslationType = Sophus::Vector2<Scalar, Options>;
using RxSO2Type = Sophus::RxSO2<Scalar, Options>;
};
template <class Scalar_, int Options>
struct traits<Map<Sophus::Sim2<Scalar_>, Options>>
: traits<Sophus::Sim2<Scalar_, Options>> {
using Scalar = Scalar_;
using TranslationType = Map<Sophus::Vector2<Scalar>, Options>;
using RxSO2Type = Map<Sophus::RxSO2<Scalar>, Options>;
};
template <class Scalar_, int Options>
struct traits<Map<Sophus::Sim2<Scalar_> const, Options>>
: traits<Sophus::Sim2<Scalar_, Options> const> {
using Scalar = Scalar_;
using TranslationType = Map<Sophus::Vector2<Scalar> const, Options>;
using RxSO2Type = Map<Sophus::RxSO2<Scalar> const, Options>;
};
} // namespace internal
} // namespace Eigen
namespace Sophus {
/// Sim2 base type - implements Sim2 class but is storage agnostic.
///
/// Sim(2) is the group of rotations and translation and scaling in 2d. It is
/// the semi-direct product of R+xSO(2) and the 2d Euclidean vector space. The
/// class is represented using a composition of RxSO2 for scaling plus
/// rotation and a 2-vector for translation.
///
/// Sim(2) is neither compact, nor a commutative group.
///
/// See RxSO2 for more details of the scaling + rotation representation in 2d.
///
template <class Derived>
class Sim2Base {
public:
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
using TranslationType =
typename Eigen::internal::traits<Derived>::TranslationType;
using RxSO2Type = typename Eigen::internal::traits<Derived>::RxSO2Type;
/// Degrees of freedom of manifold, number of dimensions in tangent space
/// (two for translation, one for rotation and one for scaling).
static int constexpr DoF = 4;
/// Number of internal parameters used (2-tuple for complex number, two for
/// translation).
static int constexpr num_parameters = 4;
/// Group transformations are 3x3 matrices.
static int constexpr N = 3;
using Transformation = Matrix<Scalar, N, N>;
using Point = Vector2<Scalar>;
using HomogeneousPoint = Vector3<Scalar>;
using Line = ParametrizedLine2<Scalar>;
using Tangent = Vector<Scalar, DoF>;
using Adjoint = Matrix<Scalar, DoF, DoF>;
/// For binary operations the return type is determined with the
/// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
/// types, as well as other compatible scalar types such as Ceres::Jet and
/// double scalars with SIM2 operations.
template <typename OtherDerived>
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
Scalar, typename OtherDerived::Scalar>::ReturnType;
template <typename OtherDerived>
using Sim2Product = Sim2<ReturnScalar<OtherDerived>>;
template <typename PointDerived>
using PointProduct = Vector2<ReturnScalar<PointDerived>>;
template <typename HPointDerived>
using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
/// Adjoint transformation
///
/// This function return the adjoint transformation ``Ad`` of the group
/// element ``A`` such that for all ``x`` it holds that
/// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
///
SOPHUS_FUNC Adjoint Adj() const {
Adjoint res;
res.setZero();
res.template block<2, 2>(0, 0) = rxso2().matrix();
res(0, 2) = translation()[1];
res(1, 2) = -translation()[0];
res.template block<2, 1>(0, 3) = -translation();
res(2, 2) = Scalar(1);
res(3, 3) = Scalar(1);
return res;
}
/// Returns copy of instance casted to NewScalarType.
///
template <class NewScalarType>
SOPHUS_FUNC Sim2<NewScalarType> cast() const {
return Sim2<NewScalarType>(rxso2().template cast<NewScalarType>(),
translation().template cast<NewScalarType>());
}
/// Returns group inverse.
///
SOPHUS_FUNC Sim2<Scalar> inverse() const {
RxSO2<Scalar> invR = rxso2().inverse();
return Sim2<Scalar>(invR, invR * (translation() * Scalar(-1)));
}
/// Logarithmic map
///
/// Computes the logarithm, the inverse of the group exponential which maps
/// element of the group (rigid body transformations) to elements of the
/// tangent space (twist).
///
/// To be specific, this function computes ``vee(logmat(.))`` with
/// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
/// of Sim(2).
///
SOPHUS_FUNC Tangent log() const {
/// The derivation of the closed-form Sim(2) logarithm for is done
/// analogously to the closed-form solution of the SE(2) logarithm, see
/// J. Gallier, D. Xu, "Computing exponentials of skew symmetric matrices
/// and logarithms of orthogonal matrices", IJRA 2002.
/// https:///pdfs.semanticscholar.org/cfe3/e4b39de63c8cabd89bf3feff7f5449fc981d.pdf
/// (Sec. 6., pp. 8)
Tangent res;
Vector2<Scalar> const theta_sigma = rxso2().log();
Scalar const theta = theta_sigma[0];
Scalar const sigma = theta_sigma[1];
Matrix2<Scalar> const Omega = SO2<Scalar>::hat(theta);
Matrix2<Scalar> const W_inv =
details::calcWInv<Scalar, 2>(Omega, theta, sigma, scale());
res.segment(0, 2) = W_inv * translation();
res[2] = theta;
res[3] = sigma;
return res;
}
/// Returns 3x3 matrix representation of the instance.
///
/// It has the following form:
///
/// | s*R t |
/// | o 1 |
///
/// where ``R`` is a 2x2 rotation matrix, ``s`` a scale factor, ``t`` a
/// translation 2-vector and ``o`` a 2-column vector of zeros.
///
SOPHUS_FUNC Transformation matrix() const {
Transformation homogenious_matrix;
homogenious_matrix.template topLeftCorner<2, 3>() = matrix2x3();
homogenious_matrix.row(2) =
Matrix<Scalar, 3, 1>(Scalar(0), Scalar(0), Scalar(1));
return homogenious_matrix;
}
/// Returns the significant first two rows of the matrix above.
///
SOPHUS_FUNC Matrix<Scalar, 2, 3> matrix2x3() const {
Matrix<Scalar, 2, 3> matrix;
matrix.template topLeftCorner<2, 2>() = rxso2().matrix();
matrix.col(2) = translation();
return matrix;
}
/// Assignment-like operator from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC Sim2Base<Derived>& operator=(
Sim2Base<OtherDerived> const& other) {
rxso2() = other.rxso2();
translation() = other.translation();
return *this;
}
/// Group multiplication, which is rotation plus scaling concatenation.
///
/// Note: That scaling is calculated with saturation. See RxSO2 for
/// details.
///
template <typename OtherDerived>
SOPHUS_FUNC Sim2Product<OtherDerived> operator*(
Sim2Base<OtherDerived> const& other) const {
return Sim2Product<OtherDerived>(
rxso2() * other.rxso2(), translation() + rxso2() * other.translation());
}
/// Group action on 2-points.
///
/// This function rotates, scales and translates a two dimensional point
/// ``p`` by the Sim(2) element ``(bar_sR_foo, t_bar)`` (= similarity
/// transformation):
///
/// ``p_bar = bar_sR_foo * p_foo + t_bar``.
///
template <typename PointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<PointDerived, 2>::value>::type>
SOPHUS_FUNC PointProduct<PointDerived> operator*(
Eigen::MatrixBase<PointDerived> const& p) const {
return rxso2() * p + translation();
}
/// Group action on homogeneous 2-points. See above for more details.
///
template <typename HPointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<HPointDerived, 3>::value>::type>
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
Eigen::MatrixBase<HPointDerived> const& p) const {
const PointProduct<HPointDerived> tp =
rxso2() * p.template head<2>() + p(2) * translation();
return HomogeneousPointProduct<HPointDerived>(tp(0), tp(1), p(2));
}
/// Group action on lines.
///
/// This function rotates, scales and translates a parametrized line
/// ``l(t) = o + t * d`` by the Sim(2) element:
///
/// Origin ``o`` is rotated, scaled and translated
/// Direction ``d`` is rotated
///
SOPHUS_FUNC Line operator*(Line const& l) const {
Line rotatedLine = rxso2() * l;
return Line(rotatedLine.origin() + translation(), rotatedLine.direction());
}
/// Returns internal parameters of Sim(2).
///
/// It returns (c[0], c[1], t[0], t[1]),
/// with c being the complex number, t the translation 3-vector.
///
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
Sophus::Vector<Scalar, num_parameters> p;
p << rxso2().params(), translation();
return p;
}
/// In-place group multiplication. This method is only valid if the return
/// type of the multiplication is compatible with this SO2's Scalar type.
///
template <typename OtherDerived,
typename = typename std::enable_if<
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
SOPHUS_FUNC Sim2Base<Derived>& operator*=(
Sim2Base<OtherDerived> const& other) {
*static_cast<Derived*>(this) = *this * other;
return *this;
}
/// Setter of non-zero complex number.
///
/// Precondition: ``z`` must not be close to zero.
///
SOPHUS_FUNC void setComplex(Vector2<Scalar> const& z) {
rxso2().setComplex(z);
}
/// Accessor of complex number.
///
SOPHUS_FUNC
typename Eigen::internal::traits<Derived>::RxSO2Type::ComplexType const&
complex() const {
return rxso2().complex();
}
/// Returns Rotation matrix
///
SOPHUS_FUNC Matrix2<Scalar> rotationMatrix() const {
return rxso2().rotationMatrix();
}
/// Mutator of SO2 group.
///
SOPHUS_FUNC RxSO2Type& rxso2() {
return static_cast<Derived*>(this)->rxso2();
}
/// Accessor of SO2 group.
///
SOPHUS_FUNC RxSO2Type const& rxso2() const {
return static_cast<Derived const*>(this)->rxso2();
}
/// Returns scale.
///
SOPHUS_FUNC Scalar scale() const { return rxso2().scale(); }
/// Setter of complex number using rotation matrix ``R``, leaves scale as is.
///
SOPHUS_FUNC void setRotationMatrix(Matrix2<Scalar>& R) {
rxso2().setRotationMatrix(R);
}
/// Sets scale and leaves rotation as is.
///
/// Note: This function as a significant computational cost, since it has to
/// call the square root twice.
///
SOPHUS_FUNC void setScale(Scalar const& scale) { rxso2().setScale(scale); }
/// Setter of complexnumber using scaled rotation matrix ``sR``.
///
/// Precondition: The 2x2 matrix must be "scaled orthogonal"
/// and have a positive determinant.
///
SOPHUS_FUNC void setScaledRotationMatrix(Matrix2<Scalar> const& sR) {
rxso2().setScaledRotationMatrix(sR);
}
/// Mutator of translation vector
///
SOPHUS_FUNC TranslationType& translation() {
return static_cast<Derived*>(this)->translation();
}
/// Accessor of translation vector
///
SOPHUS_FUNC TranslationType const& translation() const {
return static_cast<Derived const*>(this)->translation();
}
};
/// Sim2 using default storage; derived from Sim2Base.
template <class Scalar_, int Options>
class Sim2 : public Sim2Base<Sim2<Scalar_, Options>> {
public:
using Base = Sim2Base<Sim2<Scalar_, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using RxSo2Member = RxSO2<Scalar, Options>;
using TranslationMember = Vector2<Scalar, Options>;
using Base::operator=;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// Default constructor initializes similarity transform to the identity.
///
SOPHUS_FUNC Sim2();
/// Copy constructor
///
SOPHUS_FUNC Sim2(Sim2 const& other) = default;
/// Copy-like constructor from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC Sim2(Sim2Base<OtherDerived> const& other)
: rxso2_(other.rxso2()), translation_(other.translation()) {
static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
"must be same Scalar type");
}
/// Constructor from RxSO2 and translation vector
///
template <class OtherDerived, class D>
SOPHUS_FUNC Sim2(RxSO2Base<OtherDerived> const& rxso2,
Eigen::MatrixBase<D> const& translation)
: rxso2_(rxso2), translation_(translation) {
static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
"must be same Scalar type");
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
"must be same Scalar type");
}
/// Constructor from complex number and translation vector.
///
/// Precondition: complex number must not be close to zero.
///
template <class D>
SOPHUS_FUNC Sim2(Vector2<Scalar> const& complex_number,
Eigen::MatrixBase<D> const& translation)
: rxso2_(complex_number), translation_(translation) {
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
"must be same Scalar type");
}
/// Constructor from 3x3 matrix
///
/// Precondition: Top-left 2x2 matrix needs to be "scaled-orthogonal" with
/// positive determinant. The last row must be ``(0, 0, 1)``.
///
SOPHUS_FUNC explicit Sim2(Matrix<Scalar, 3, 3> const& T)
: rxso2_((T.template topLeftCorner<2, 2>()).eval()),
translation_(T.template block<2, 1>(0, 2)) {}
/// This provides unsafe read/write access to internal data. Sim(2) is
/// represented by a complex number (two parameters) and a 2-vector. When
/// using direct write access, the user needs to take care of that the
/// complex number is not set close to zero.
///
SOPHUS_FUNC Scalar* data() {
// rxso2_ and translation_ are laid out sequentially with no padding
return rxso2_.data();
}
/// Const version of data() above.
///
SOPHUS_FUNC Scalar const* data() const {
// rxso2_ and translation_ are laid out sequentially with no padding
return rxso2_.data();
}
/// Accessor of RxSO2
///
SOPHUS_FUNC RxSo2Member& rxso2() { return rxso2_; }
/// Mutator of RxSO2
///
SOPHUS_FUNC RxSo2Member const& rxso2() const { return rxso2_; }
/// Mutator of translation vector
///
SOPHUS_FUNC TranslationMember& translation() { return translation_; }
/// Accessor of translation vector
///
SOPHUS_FUNC TranslationMember const& translation() const {
return translation_;
}
/// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
///
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
return generator(i);
}
/// Derivative of Lie bracket with respect to first element.
///
/// This function returns ``D_a [a, b]`` with ``D_a`` being the
/// differential operator with respect to ``a``, ``[a, b]`` being the lie
/// bracket of the Lie algebra sim(2).
/// See ``lieBracket()`` below.
///
/// Group exponential
///
/// This functions takes in an element of tangent space and returns the
/// corresponding element of the group Sim(2).
///
/// The first two components of ``a`` represent the translational part
/// ``upsilon`` in the tangent space of Sim(2), the following two components
/// of ``a`` represents the rotation ``theta`` and the final component
/// represents the logarithm of the scaling factor ``sigma``.
/// To be more specific, this function computes ``expmat(hat(a))`` with
/// ``expmat(.)`` being the matrix exponential and ``hat(.)`` the hat-operator
/// of Sim(2), see below.
///
SOPHUS_FUNC static Sim2<Scalar> exp(Tangent const& a) {
// For the derivation of the exponential map of Sim(N) see
// H. Strasdat, "Local Accuracy and Global Consistency for Efficient Visual
// SLAM", PhD thesis, 2012.
// http:///hauke.strasdat.net/files/strasdat_thesis_2012.pdf (A.5, pp. 186)
Vector2<Scalar> const upsilon = a.segment(0, 2);
Scalar const theta = a[2];
Scalar const sigma = a[3];
RxSO2<Scalar> rxso2 = RxSO2<Scalar>::exp(a.template tail<2>());
Matrix2<Scalar> const Omega = SO2<Scalar>::hat(theta);
Matrix2<Scalar> const W = details::calcW<Scalar, 2>(Omega, theta, sigma);
return Sim2<Scalar>(rxso2, W * upsilon);
}
/// Returns the ith infinitesimal generators of Sim(2).
///
/// The infinitesimal generators of Sim(2) are:
///
/// ```
/// | 0 0 1 |
/// G_0 = | 0 0 0 |
/// | 0 0 0 |
///
/// | 0 0 0 |
/// G_1 = | 0 0 1 |
/// | 0 0 0 |
///
/// | 0 -1 0 |
/// G_2 = | 1 0 0 |
/// | 0 0 0 |
///
/// | 1 0 0 |
/// G_3 = | 0 1 0 |
/// | 0 0 0 |
/// ```
///
/// Precondition: ``i`` must be in [0, 3].
///
SOPHUS_FUNC static Transformation generator(int i) {
SOPHUS_ENSURE(i >= 0 || i <= 3, "i should be in range [0,3].");
Tangent e;
e.setZero();
e[i] = Scalar(1);
return hat(e);
}
/// hat-operator
///
/// It takes in the 4-vector representation and returns the corresponding
/// matrix representation of Lie algebra element.
///
/// Formally, the hat()-operator of Sim(2) is defined as
///
/// ``hat(.): R^4 -> R^{3x3}, hat(a) = sum_i a_i * G_i`` (for i=0,...,6)
///
/// with ``G_i`` being the ith infinitesimal generator of Sim(2).
///
/// The corresponding inverse is the vee()-operator, see below.
///
SOPHUS_FUNC static Transformation hat(Tangent const& a) {
Transformation Omega;
Omega.template topLeftCorner<2, 2>() =
RxSO2<Scalar>::hat(a.template tail<2>());
Omega.col(2).template head<2>() = a.template head<2>();
Omega.row(2).setZero();
return Omega;
}
/// Lie bracket
///
/// It computes the Lie bracket of Sim(2). To be more specific, it computes
///
/// ``[omega_1, omega_2]_sim2 := vee([hat(omega_1), hat(omega_2)])``
///
/// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
/// hat()-operator and ``vee(.)`` the vee()-operator of Sim(2).
///
SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
Vector2<Scalar> const upsilon1 = a.template head<2>();
Vector2<Scalar> const upsilon2 = b.template head<2>();
Scalar const theta1 = a[2];
Scalar const theta2 = b[2];
Scalar const sigma1 = a[3];
Scalar const sigma2 = b[3];
Tangent res;
res[0] = -theta1 * upsilon2[1] + theta2 * upsilon1[1] +
sigma1 * upsilon2[0] - sigma2 * upsilon1[0];
res[1] = theta1 * upsilon2[0] - theta2 * upsilon1[0] +
sigma1 * upsilon2[1] - sigma2 * upsilon1[1];
res[2] = Scalar(0);
res[3] = Scalar(0);
return res;
}
/// Draw uniform sample from Sim(2) manifold.
///
/// Translations are drawn component-wise from the range [-1, 1].
/// The scale factor is drawn uniformly in log2-space from [-1, 1],
/// hence the scale is in [0.5, 2].
///
template <class UniformRandomBitGenerator>
static Sim2 sampleUniform(UniformRandomBitGenerator& generator) {
std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
return Sim2(RxSO2<Scalar>::sampleUniform(generator),
Vector2<Scalar>(uniform(generator), uniform(generator)));
}
/// vee-operator
///
/// It takes the 3x3-matrix representation ``Omega`` and maps it to the
/// corresponding 4-vector representation of Lie algebra.
///
/// This is the inverse of the hat()-operator, see above.
///
/// Precondition: ``Omega`` must have the following structure:
///
/// | d -c a |
/// | c d b |
/// | 0 0 0 |
///
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
Tangent upsilon_omega_sigma;
upsilon_omega_sigma.template head<2>() = Omega.col(2).template head<2>();
upsilon_omega_sigma.template tail<2>() =
RxSO2<Scalar>::vee(Omega.template topLeftCorner<2, 2>());
return upsilon_omega_sigma;
}
protected:
RxSo2Member rxso2_;
TranslationMember translation_;
};
template <class Scalar, int Options>
Sim2<Scalar, Options>::Sim2() : translation_(TranslationMember::Zero()) {
static_assert(std::is_standard_layout<Sim2>::value,
"Assume standard layout for the use of offsetof check below.");
static_assert(
offsetof(Sim2, rxso2_) + sizeof(Scalar) * RxSO2<Scalar>::num_parameters ==
offsetof(Sim2, translation_),
"This class assumes packed storage and hence will only work "
"correctly depending on the compiler (options) - in "
"particular when using [this->data(), this-data() + "
"num_parameters] to access the raw data in a contiguous fashion.");
}
} // namespace Sophus
namespace Eigen {
/// Specialization of Eigen::Map for ``Sim2``; derived from Sim2Base.
///
/// Allows us to wrap Sim2 objects around POD array.
template <class Scalar_, int Options>
class Map<Sophus::Sim2<Scalar_>, Options>
: public Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_>, Options>> {
public:
using Base = Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_>, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator=;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC Map(Scalar* coeffs)
: rxso2_(coeffs),
translation_(coeffs + Sophus::RxSO2<Scalar>::num_parameters) {}
/// Mutator of RxSO2
///
SOPHUS_FUNC Map<Sophus::RxSO2<Scalar>, Options>& rxso2() { return rxso2_; }
/// Accessor of RxSO2
///
SOPHUS_FUNC Map<Sophus::RxSO2<Scalar>, Options> const& rxso2() const {
return rxso2_;
}
/// Mutator of translation vector
///
SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options>& translation() {
return translation_;
}
/// Accessor of translation vector
SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options> const& translation() const {
return translation_;
}
protected:
Map<Sophus::RxSO2<Scalar>, Options> rxso2_;
Map<Sophus::Vector2<Scalar>, Options> translation_;
};
/// Specialization of Eigen::Map for ``Sim2 const``; derived from Sim2Base.
///
/// Allows us to wrap RxSO2 objects around POD array.
template <class Scalar_, int Options>
class Map<Sophus::Sim2<Scalar_> const, Options>
: public Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_> const, Options>> {
public:
using Base = Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_> const, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC Map(Scalar const* coeffs)
: rxso2_(coeffs),
translation_(coeffs + Sophus::RxSO2<Scalar>::num_parameters) {}
/// Accessor of RxSO2
///
SOPHUS_FUNC Map<Sophus::RxSO2<Scalar> const, Options> const& rxso2() const {
return rxso2_;
}
/// Accessor of translation vector
///
SOPHUS_FUNC Map<Sophus::Vector2<Scalar> const, Options> const& translation()
const {
return translation_;
}
protected:
Map<Sophus::RxSO2<Scalar> const, Options> const rxso2_;
Map<Sophus::Vector2<Scalar> const, Options> const translation_;
};
} // namespace Eigen
#endif