723 lines
24 KiB
C++
723 lines
24 KiB
C++
/// @file
|
|
/// Similarity group Sim(2) - scaling, rotation and translation in 2d.
|
|
|
|
#ifndef SOPHUS_SIM2_HPP
|
|
#define SOPHUS_SIM2_HPP
|
|
|
|
#include "rxso2.hpp"
|
|
#include "sim_details.hpp"
|
|
|
|
namespace Sophus {
|
|
template <class Scalar_, int Options = 0>
|
|
class Sim2;
|
|
using Sim2d = Sim2<double>;
|
|
using Sim2f = Sim2<float>;
|
|
} // namespace Sophus
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
template <class Scalar_, int Options>
|
|
struct traits<Sophus::Sim2<Scalar_, Options>> {
|
|
using Scalar = Scalar_;
|
|
using TranslationType = Sophus::Vector2<Scalar, Options>;
|
|
using RxSO2Type = Sophus::RxSO2<Scalar, Options>;
|
|
};
|
|
|
|
template <class Scalar_, int Options>
|
|
struct traits<Map<Sophus::Sim2<Scalar_>, Options>>
|
|
: traits<Sophus::Sim2<Scalar_, Options>> {
|
|
using Scalar = Scalar_;
|
|
using TranslationType = Map<Sophus::Vector2<Scalar>, Options>;
|
|
using RxSO2Type = Map<Sophus::RxSO2<Scalar>, Options>;
|
|
};
|
|
|
|
template <class Scalar_, int Options>
|
|
struct traits<Map<Sophus::Sim2<Scalar_> const, Options>>
|
|
: traits<Sophus::Sim2<Scalar_, Options> const> {
|
|
using Scalar = Scalar_;
|
|
using TranslationType = Map<Sophus::Vector2<Scalar> const, Options>;
|
|
using RxSO2Type = Map<Sophus::RxSO2<Scalar> const, Options>;
|
|
};
|
|
} // namespace internal
|
|
} // namespace Eigen
|
|
|
|
namespace Sophus {
|
|
|
|
/// Sim2 base type - implements Sim2 class but is storage agnostic.
|
|
///
|
|
/// Sim(2) is the group of rotations and translation and scaling in 2d. It is
|
|
/// the semi-direct product of R+xSO(2) and the 2d Euclidean vector space. The
|
|
/// class is represented using a composition of RxSO2 for scaling plus
|
|
/// rotation and a 2-vector for translation.
|
|
///
|
|
/// Sim(2) is neither compact, nor a commutative group.
|
|
///
|
|
/// See RxSO2 for more details of the scaling + rotation representation in 2d.
|
|
///
|
|
template <class Derived>
|
|
class Sim2Base {
|
|
public:
|
|
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
|
|
using TranslationType =
|
|
typename Eigen::internal::traits<Derived>::TranslationType;
|
|
using RxSO2Type = typename Eigen::internal::traits<Derived>::RxSO2Type;
|
|
|
|
/// Degrees of freedom of manifold, number of dimensions in tangent space
|
|
/// (two for translation, one for rotation and one for scaling).
|
|
static int constexpr DoF = 4;
|
|
/// Number of internal parameters used (2-tuple for complex number, two for
|
|
/// translation).
|
|
static int constexpr num_parameters = 4;
|
|
/// Group transformations are 3x3 matrices.
|
|
static int constexpr N = 3;
|
|
using Transformation = Matrix<Scalar, N, N>;
|
|
using Point = Vector2<Scalar>;
|
|
using HomogeneousPoint = Vector3<Scalar>;
|
|
using Line = ParametrizedLine2<Scalar>;
|
|
using Tangent = Vector<Scalar, DoF>;
|
|
using Adjoint = Matrix<Scalar, DoF, DoF>;
|
|
|
|
/// For binary operations the return type is determined with the
|
|
/// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
|
|
/// types, as well as other compatible scalar types such as Ceres::Jet and
|
|
/// double scalars with SIM2 operations.
|
|
template <typename OtherDerived>
|
|
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
|
|
Scalar, typename OtherDerived::Scalar>::ReturnType;
|
|
|
|
template <typename OtherDerived>
|
|
using Sim2Product = Sim2<ReturnScalar<OtherDerived>>;
|
|
|
|
template <typename PointDerived>
|
|
using PointProduct = Vector2<ReturnScalar<PointDerived>>;
|
|
|
|
template <typename HPointDerived>
|
|
using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
|
|
|
|
/// Adjoint transformation
|
|
///
|
|
/// This function return the adjoint transformation ``Ad`` of the group
|
|
/// element ``A`` such that for all ``x`` it holds that
|
|
/// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
|
|
///
|
|
SOPHUS_FUNC Adjoint Adj() const {
|
|
Adjoint res;
|
|
res.setZero();
|
|
res.template block<2, 2>(0, 0) = rxso2().matrix();
|
|
res(0, 2) = translation()[1];
|
|
res(1, 2) = -translation()[0];
|
|
res.template block<2, 1>(0, 3) = -translation();
|
|
|
|
res(2, 2) = Scalar(1);
|
|
|
|
res(3, 3) = Scalar(1);
|
|
return res;
|
|
}
|
|
|
|
/// Returns copy of instance casted to NewScalarType.
|
|
///
|
|
template <class NewScalarType>
|
|
SOPHUS_FUNC Sim2<NewScalarType> cast() const {
|
|
return Sim2<NewScalarType>(rxso2().template cast<NewScalarType>(),
|
|
translation().template cast<NewScalarType>());
|
|
}
|
|
|
|
/// Returns group inverse.
|
|
///
|
|
SOPHUS_FUNC Sim2<Scalar> inverse() const {
|
|
RxSO2<Scalar> invR = rxso2().inverse();
|
|
return Sim2<Scalar>(invR, invR * (translation() * Scalar(-1)));
|
|
}
|
|
|
|
/// Logarithmic map
|
|
///
|
|
/// Computes the logarithm, the inverse of the group exponential which maps
|
|
/// element of the group (rigid body transformations) to elements of the
|
|
/// tangent space (twist).
|
|
///
|
|
/// To be specific, this function computes ``vee(logmat(.))`` with
|
|
/// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
|
|
/// of Sim(2).
|
|
///
|
|
SOPHUS_FUNC Tangent log() const {
|
|
/// The derivation of the closed-form Sim(2) logarithm for is done
|
|
/// analogously to the closed-form solution of the SE(2) logarithm, see
|
|
/// J. Gallier, D. Xu, "Computing exponentials of skew symmetric matrices
|
|
/// and logarithms of orthogonal matrices", IJRA 2002.
|
|
/// https:///pdfs.semanticscholar.org/cfe3/e4b39de63c8cabd89bf3feff7f5449fc981d.pdf
|
|
/// (Sec. 6., pp. 8)
|
|
Tangent res;
|
|
Vector2<Scalar> const theta_sigma = rxso2().log();
|
|
Scalar const theta = theta_sigma[0];
|
|
Scalar const sigma = theta_sigma[1];
|
|
Matrix2<Scalar> const Omega = SO2<Scalar>::hat(theta);
|
|
Matrix2<Scalar> const W_inv =
|
|
details::calcWInv<Scalar, 2>(Omega, theta, sigma, scale());
|
|
|
|
res.segment(0, 2) = W_inv * translation();
|
|
res[2] = theta;
|
|
res[3] = sigma;
|
|
return res;
|
|
}
|
|
|
|
/// Returns 3x3 matrix representation of the instance.
|
|
///
|
|
/// It has the following form:
|
|
///
|
|
/// | s*R t |
|
|
/// | o 1 |
|
|
///
|
|
/// where ``R`` is a 2x2 rotation matrix, ``s`` a scale factor, ``t`` a
|
|
/// translation 2-vector and ``o`` a 2-column vector of zeros.
|
|
///
|
|
SOPHUS_FUNC Transformation matrix() const {
|
|
Transformation homogenious_matrix;
|
|
homogenious_matrix.template topLeftCorner<2, 3>() = matrix2x3();
|
|
homogenious_matrix.row(2) =
|
|
Matrix<Scalar, 3, 1>(Scalar(0), Scalar(0), Scalar(1));
|
|
return homogenious_matrix;
|
|
}
|
|
|
|
/// Returns the significant first two rows of the matrix above.
|
|
///
|
|
SOPHUS_FUNC Matrix<Scalar, 2, 3> matrix2x3() const {
|
|
Matrix<Scalar, 2, 3> matrix;
|
|
matrix.template topLeftCorner<2, 2>() = rxso2().matrix();
|
|
matrix.col(2) = translation();
|
|
return matrix;
|
|
}
|
|
|
|
/// Assignment-like operator from OtherDerived.
|
|
///
|
|
template <class OtherDerived>
|
|
SOPHUS_FUNC Sim2Base<Derived>& operator=(
|
|
Sim2Base<OtherDerived> const& other) {
|
|
rxso2() = other.rxso2();
|
|
translation() = other.translation();
|
|
return *this;
|
|
}
|
|
|
|
/// Group multiplication, which is rotation plus scaling concatenation.
|
|
///
|
|
/// Note: That scaling is calculated with saturation. See RxSO2 for
|
|
/// details.
|
|
///
|
|
template <typename OtherDerived>
|
|
SOPHUS_FUNC Sim2Product<OtherDerived> operator*(
|
|
Sim2Base<OtherDerived> const& other) const {
|
|
return Sim2Product<OtherDerived>(
|
|
rxso2() * other.rxso2(), translation() + rxso2() * other.translation());
|
|
}
|
|
|
|
/// Group action on 2-points.
|
|
///
|
|
/// This function rotates, scales and translates a two dimensional point
|
|
/// ``p`` by the Sim(2) element ``(bar_sR_foo, t_bar)`` (= similarity
|
|
/// transformation):
|
|
///
|
|
/// ``p_bar = bar_sR_foo * p_foo + t_bar``.
|
|
///
|
|
template <typename PointDerived,
|
|
typename = typename std::enable_if<
|
|
IsFixedSizeVector<PointDerived, 2>::value>::type>
|
|
SOPHUS_FUNC PointProduct<PointDerived> operator*(
|
|
Eigen::MatrixBase<PointDerived> const& p) const {
|
|
return rxso2() * p + translation();
|
|
}
|
|
|
|
/// Group action on homogeneous 2-points. See above for more details.
|
|
///
|
|
template <typename HPointDerived,
|
|
typename = typename std::enable_if<
|
|
IsFixedSizeVector<HPointDerived, 3>::value>::type>
|
|
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
|
|
Eigen::MatrixBase<HPointDerived> const& p) const {
|
|
const PointProduct<HPointDerived> tp =
|
|
rxso2() * p.template head<2>() + p(2) * translation();
|
|
return HomogeneousPointProduct<HPointDerived>(tp(0), tp(1), p(2));
|
|
}
|
|
|
|
/// Group action on lines.
|
|
///
|
|
/// This function rotates, scales and translates a parametrized line
|
|
/// ``l(t) = o + t * d`` by the Sim(2) element:
|
|
///
|
|
/// Origin ``o`` is rotated, scaled and translated
|
|
/// Direction ``d`` is rotated
|
|
///
|
|
SOPHUS_FUNC Line operator*(Line const& l) const {
|
|
Line rotatedLine = rxso2() * l;
|
|
return Line(rotatedLine.origin() + translation(), rotatedLine.direction());
|
|
}
|
|
|
|
/// Returns internal parameters of Sim(2).
|
|
///
|
|
/// It returns (c[0], c[1], t[0], t[1]),
|
|
/// with c being the complex number, t the translation 3-vector.
|
|
///
|
|
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
|
|
Sophus::Vector<Scalar, num_parameters> p;
|
|
p << rxso2().params(), translation();
|
|
return p;
|
|
}
|
|
|
|
/// In-place group multiplication. This method is only valid if the return
|
|
/// type of the multiplication is compatible with this SO2's Scalar type.
|
|
///
|
|
template <typename OtherDerived,
|
|
typename = typename std::enable_if<
|
|
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
|
|
SOPHUS_FUNC Sim2Base<Derived>& operator*=(
|
|
Sim2Base<OtherDerived> const& other) {
|
|
*static_cast<Derived*>(this) = *this * other;
|
|
return *this;
|
|
}
|
|
|
|
/// Setter of non-zero complex number.
|
|
///
|
|
/// Precondition: ``z`` must not be close to zero.
|
|
///
|
|
SOPHUS_FUNC void setComplex(Vector2<Scalar> const& z) {
|
|
rxso2().setComplex(z);
|
|
}
|
|
|
|
/// Accessor of complex number.
|
|
///
|
|
SOPHUS_FUNC
|
|
typename Eigen::internal::traits<Derived>::RxSO2Type::ComplexType const&
|
|
complex() const {
|
|
return rxso2().complex();
|
|
}
|
|
|
|
/// Returns Rotation matrix
|
|
///
|
|
SOPHUS_FUNC Matrix2<Scalar> rotationMatrix() const {
|
|
return rxso2().rotationMatrix();
|
|
}
|
|
|
|
/// Mutator of SO2 group.
|
|
///
|
|
SOPHUS_FUNC RxSO2Type& rxso2() {
|
|
return static_cast<Derived*>(this)->rxso2();
|
|
}
|
|
|
|
/// Accessor of SO2 group.
|
|
///
|
|
SOPHUS_FUNC RxSO2Type const& rxso2() const {
|
|
return static_cast<Derived const*>(this)->rxso2();
|
|
}
|
|
|
|
/// Returns scale.
|
|
///
|
|
SOPHUS_FUNC Scalar scale() const { return rxso2().scale(); }
|
|
|
|
/// Setter of complex number using rotation matrix ``R``, leaves scale as is.
|
|
///
|
|
SOPHUS_FUNC void setRotationMatrix(Matrix2<Scalar>& R) {
|
|
rxso2().setRotationMatrix(R);
|
|
}
|
|
|
|
/// Sets scale and leaves rotation as is.
|
|
///
|
|
/// Note: This function as a significant computational cost, since it has to
|
|
/// call the square root twice.
|
|
///
|
|
SOPHUS_FUNC void setScale(Scalar const& scale) { rxso2().setScale(scale); }
|
|
|
|
/// Setter of complexnumber using scaled rotation matrix ``sR``.
|
|
///
|
|
/// Precondition: The 2x2 matrix must be "scaled orthogonal"
|
|
/// and have a positive determinant.
|
|
///
|
|
SOPHUS_FUNC void setScaledRotationMatrix(Matrix2<Scalar> const& sR) {
|
|
rxso2().setScaledRotationMatrix(sR);
|
|
}
|
|
|
|
/// Mutator of translation vector
|
|
///
|
|
SOPHUS_FUNC TranslationType& translation() {
|
|
return static_cast<Derived*>(this)->translation();
|
|
}
|
|
|
|
/// Accessor of translation vector
|
|
///
|
|
SOPHUS_FUNC TranslationType const& translation() const {
|
|
return static_cast<Derived const*>(this)->translation();
|
|
}
|
|
};
|
|
|
|
/// Sim2 using default storage; derived from Sim2Base.
|
|
template <class Scalar_, int Options>
|
|
class Sim2 : public Sim2Base<Sim2<Scalar_, Options>> {
|
|
public:
|
|
using Base = Sim2Base<Sim2<Scalar_, Options>>;
|
|
using Scalar = Scalar_;
|
|
using Transformation = typename Base::Transformation;
|
|
using Point = typename Base::Point;
|
|
using HomogeneousPoint = typename Base::HomogeneousPoint;
|
|
using Tangent = typename Base::Tangent;
|
|
using Adjoint = typename Base::Adjoint;
|
|
using RxSo2Member = RxSO2<Scalar, Options>;
|
|
using TranslationMember = Vector2<Scalar, Options>;
|
|
|
|
using Base::operator=;
|
|
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
/// Default constructor initializes similarity transform to the identity.
|
|
///
|
|
SOPHUS_FUNC Sim2();
|
|
|
|
/// Copy constructor
|
|
///
|
|
SOPHUS_FUNC Sim2(Sim2 const& other) = default;
|
|
|
|
/// Copy-like constructor from OtherDerived.
|
|
///
|
|
template <class OtherDerived>
|
|
SOPHUS_FUNC Sim2(Sim2Base<OtherDerived> const& other)
|
|
: rxso2_(other.rxso2()), translation_(other.translation()) {
|
|
static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
|
|
"must be same Scalar type");
|
|
}
|
|
|
|
/// Constructor from RxSO2 and translation vector
|
|
///
|
|
template <class OtherDerived, class D>
|
|
SOPHUS_FUNC Sim2(RxSO2Base<OtherDerived> const& rxso2,
|
|
Eigen::MatrixBase<D> const& translation)
|
|
: rxso2_(rxso2), translation_(translation) {
|
|
static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
|
|
"must be same Scalar type");
|
|
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
|
|
"must be same Scalar type");
|
|
}
|
|
|
|
/// Constructor from complex number and translation vector.
|
|
///
|
|
/// Precondition: complex number must not be close to zero.
|
|
///
|
|
template <class D>
|
|
SOPHUS_FUNC Sim2(Vector2<Scalar> const& complex_number,
|
|
Eigen::MatrixBase<D> const& translation)
|
|
: rxso2_(complex_number), translation_(translation) {
|
|
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
|
|
"must be same Scalar type");
|
|
}
|
|
|
|
/// Constructor from 3x3 matrix
|
|
///
|
|
/// Precondition: Top-left 2x2 matrix needs to be "scaled-orthogonal" with
|
|
/// positive determinant. The last row must be ``(0, 0, 1)``.
|
|
///
|
|
SOPHUS_FUNC explicit Sim2(Matrix<Scalar, 3, 3> const& T)
|
|
: rxso2_((T.template topLeftCorner<2, 2>()).eval()),
|
|
translation_(T.template block<2, 1>(0, 2)) {}
|
|
|
|
/// This provides unsafe read/write access to internal data. Sim(2) is
|
|
/// represented by a complex number (two parameters) and a 2-vector. When
|
|
/// using direct write access, the user needs to take care of that the
|
|
/// complex number is not set close to zero.
|
|
///
|
|
SOPHUS_FUNC Scalar* data() {
|
|
// rxso2_ and translation_ are laid out sequentially with no padding
|
|
return rxso2_.data();
|
|
}
|
|
|
|
/// Const version of data() above.
|
|
///
|
|
SOPHUS_FUNC Scalar const* data() const {
|
|
// rxso2_ and translation_ are laid out sequentially with no padding
|
|
return rxso2_.data();
|
|
}
|
|
|
|
/// Accessor of RxSO2
|
|
///
|
|
SOPHUS_FUNC RxSo2Member& rxso2() { return rxso2_; }
|
|
|
|
/// Mutator of RxSO2
|
|
///
|
|
SOPHUS_FUNC RxSo2Member const& rxso2() const { return rxso2_; }
|
|
|
|
/// Mutator of translation vector
|
|
///
|
|
SOPHUS_FUNC TranslationMember& translation() { return translation_; }
|
|
|
|
/// Accessor of translation vector
|
|
///
|
|
SOPHUS_FUNC TranslationMember const& translation() const {
|
|
return translation_;
|
|
}
|
|
|
|
/// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
|
|
///
|
|
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
|
|
return generator(i);
|
|
}
|
|
|
|
/// Derivative of Lie bracket with respect to first element.
|
|
///
|
|
/// This function returns ``D_a [a, b]`` with ``D_a`` being the
|
|
/// differential operator with respect to ``a``, ``[a, b]`` being the lie
|
|
/// bracket of the Lie algebra sim(2).
|
|
/// See ``lieBracket()`` below.
|
|
///
|
|
|
|
/// Group exponential
|
|
///
|
|
/// This functions takes in an element of tangent space and returns the
|
|
/// corresponding element of the group Sim(2).
|
|
///
|
|
/// The first two components of ``a`` represent the translational part
|
|
/// ``upsilon`` in the tangent space of Sim(2), the following two components
|
|
/// of ``a`` represents the rotation ``theta`` and the final component
|
|
/// represents the logarithm of the scaling factor ``sigma``.
|
|
/// To be more specific, this function computes ``expmat(hat(a))`` with
|
|
/// ``expmat(.)`` being the matrix exponential and ``hat(.)`` the hat-operator
|
|
/// of Sim(2), see below.
|
|
///
|
|
SOPHUS_FUNC static Sim2<Scalar> exp(Tangent const& a) {
|
|
// For the derivation of the exponential map of Sim(N) see
|
|
// H. Strasdat, "Local Accuracy and Global Consistency for Efficient Visual
|
|
// SLAM", PhD thesis, 2012.
|
|
// http:///hauke.strasdat.net/files/strasdat_thesis_2012.pdf (A.5, pp. 186)
|
|
Vector2<Scalar> const upsilon = a.segment(0, 2);
|
|
Scalar const theta = a[2];
|
|
Scalar const sigma = a[3];
|
|
RxSO2<Scalar> rxso2 = RxSO2<Scalar>::exp(a.template tail<2>());
|
|
Matrix2<Scalar> const Omega = SO2<Scalar>::hat(theta);
|
|
Matrix2<Scalar> const W = details::calcW<Scalar, 2>(Omega, theta, sigma);
|
|
return Sim2<Scalar>(rxso2, W * upsilon);
|
|
}
|
|
|
|
/// Returns the ith infinitesimal generators of Sim(2).
|
|
///
|
|
/// The infinitesimal generators of Sim(2) are:
|
|
///
|
|
/// ```
|
|
/// | 0 0 1 |
|
|
/// G_0 = | 0 0 0 |
|
|
/// | 0 0 0 |
|
|
///
|
|
/// | 0 0 0 |
|
|
/// G_1 = | 0 0 1 |
|
|
/// | 0 0 0 |
|
|
///
|
|
/// | 0 -1 0 |
|
|
/// G_2 = | 1 0 0 |
|
|
/// | 0 0 0 |
|
|
///
|
|
/// | 1 0 0 |
|
|
/// G_3 = | 0 1 0 |
|
|
/// | 0 0 0 |
|
|
/// ```
|
|
///
|
|
/// Precondition: ``i`` must be in [0, 3].
|
|
///
|
|
SOPHUS_FUNC static Transformation generator(int i) {
|
|
SOPHUS_ENSURE(i >= 0 || i <= 3, "i should be in range [0,3].");
|
|
Tangent e;
|
|
e.setZero();
|
|
e[i] = Scalar(1);
|
|
return hat(e);
|
|
}
|
|
|
|
/// hat-operator
|
|
///
|
|
/// It takes in the 4-vector representation and returns the corresponding
|
|
/// matrix representation of Lie algebra element.
|
|
///
|
|
/// Formally, the hat()-operator of Sim(2) is defined as
|
|
///
|
|
/// ``hat(.): R^4 -> R^{3x3}, hat(a) = sum_i a_i * G_i`` (for i=0,...,6)
|
|
///
|
|
/// with ``G_i`` being the ith infinitesimal generator of Sim(2).
|
|
///
|
|
/// The corresponding inverse is the vee()-operator, see below.
|
|
///
|
|
SOPHUS_FUNC static Transformation hat(Tangent const& a) {
|
|
Transformation Omega;
|
|
Omega.template topLeftCorner<2, 2>() =
|
|
RxSO2<Scalar>::hat(a.template tail<2>());
|
|
Omega.col(2).template head<2>() = a.template head<2>();
|
|
Omega.row(2).setZero();
|
|
return Omega;
|
|
}
|
|
|
|
/// Lie bracket
|
|
///
|
|
/// It computes the Lie bracket of Sim(2). To be more specific, it computes
|
|
///
|
|
/// ``[omega_1, omega_2]_sim2 := vee([hat(omega_1), hat(omega_2)])``
|
|
///
|
|
/// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
|
|
/// hat()-operator and ``vee(.)`` the vee()-operator of Sim(2).
|
|
///
|
|
SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
|
|
Vector2<Scalar> const upsilon1 = a.template head<2>();
|
|
Vector2<Scalar> const upsilon2 = b.template head<2>();
|
|
Scalar const theta1 = a[2];
|
|
Scalar const theta2 = b[2];
|
|
Scalar const sigma1 = a[3];
|
|
Scalar const sigma2 = b[3];
|
|
|
|
Tangent res;
|
|
res[0] = -theta1 * upsilon2[1] + theta2 * upsilon1[1] +
|
|
sigma1 * upsilon2[0] - sigma2 * upsilon1[0];
|
|
res[1] = theta1 * upsilon2[0] - theta2 * upsilon1[0] +
|
|
sigma1 * upsilon2[1] - sigma2 * upsilon1[1];
|
|
res[2] = Scalar(0);
|
|
res[3] = Scalar(0);
|
|
|
|
return res;
|
|
}
|
|
|
|
/// Draw uniform sample from Sim(2) manifold.
|
|
///
|
|
/// Translations are drawn component-wise from the range [-1, 1].
|
|
/// The scale factor is drawn uniformly in log2-space from [-1, 1],
|
|
/// hence the scale is in [0.5, 2].
|
|
///
|
|
template <class UniformRandomBitGenerator>
|
|
static Sim2 sampleUniform(UniformRandomBitGenerator& generator) {
|
|
std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
|
|
return Sim2(RxSO2<Scalar>::sampleUniform(generator),
|
|
Vector2<Scalar>(uniform(generator), uniform(generator)));
|
|
}
|
|
|
|
/// vee-operator
|
|
///
|
|
/// It takes the 3x3-matrix representation ``Omega`` and maps it to the
|
|
/// corresponding 4-vector representation of Lie algebra.
|
|
///
|
|
/// This is the inverse of the hat()-operator, see above.
|
|
///
|
|
/// Precondition: ``Omega`` must have the following structure:
|
|
///
|
|
/// | d -c a |
|
|
/// | c d b |
|
|
/// | 0 0 0 |
|
|
///
|
|
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
|
|
Tangent upsilon_omega_sigma;
|
|
upsilon_omega_sigma.template head<2>() = Omega.col(2).template head<2>();
|
|
upsilon_omega_sigma.template tail<2>() =
|
|
RxSO2<Scalar>::vee(Omega.template topLeftCorner<2, 2>());
|
|
return upsilon_omega_sigma;
|
|
}
|
|
|
|
protected:
|
|
RxSo2Member rxso2_;
|
|
TranslationMember translation_;
|
|
};
|
|
|
|
template <class Scalar, int Options>
|
|
Sim2<Scalar, Options>::Sim2() : translation_(TranslationMember::Zero()) {
|
|
static_assert(std::is_standard_layout<Sim2>::value,
|
|
"Assume standard layout for the use of offsetof check below.");
|
|
static_assert(
|
|
offsetof(Sim2, rxso2_) + sizeof(Scalar) * RxSO2<Scalar>::num_parameters ==
|
|
offsetof(Sim2, translation_),
|
|
"This class assumes packed storage and hence will only work "
|
|
"correctly depending on the compiler (options) - in "
|
|
"particular when using [this->data(), this-data() + "
|
|
"num_parameters] to access the raw data in a contiguous fashion.");
|
|
}
|
|
|
|
} // namespace Sophus
|
|
|
|
namespace Eigen {
|
|
|
|
/// Specialization of Eigen::Map for ``Sim2``; derived from Sim2Base.
|
|
///
|
|
/// Allows us to wrap Sim2 objects around POD array.
|
|
template <class Scalar_, int Options>
|
|
class Map<Sophus::Sim2<Scalar_>, Options>
|
|
: public Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_>, Options>> {
|
|
public:
|
|
using Base = Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_>, Options>>;
|
|
using Scalar = Scalar_;
|
|
using Transformation = typename Base::Transformation;
|
|
using Point = typename Base::Point;
|
|
using HomogeneousPoint = typename Base::HomogeneousPoint;
|
|
using Tangent = typename Base::Tangent;
|
|
using Adjoint = typename Base::Adjoint;
|
|
|
|
using Base::operator=;
|
|
using Base::operator*=;
|
|
using Base::operator*;
|
|
|
|
SOPHUS_FUNC Map(Scalar* coeffs)
|
|
: rxso2_(coeffs),
|
|
translation_(coeffs + Sophus::RxSO2<Scalar>::num_parameters) {}
|
|
|
|
/// Mutator of RxSO2
|
|
///
|
|
SOPHUS_FUNC Map<Sophus::RxSO2<Scalar>, Options>& rxso2() { return rxso2_; }
|
|
|
|
/// Accessor of RxSO2
|
|
///
|
|
SOPHUS_FUNC Map<Sophus::RxSO2<Scalar>, Options> const& rxso2() const {
|
|
return rxso2_;
|
|
}
|
|
|
|
/// Mutator of translation vector
|
|
///
|
|
SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options>& translation() {
|
|
return translation_;
|
|
}
|
|
|
|
/// Accessor of translation vector
|
|
SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options> const& translation() const {
|
|
return translation_;
|
|
}
|
|
|
|
protected:
|
|
Map<Sophus::RxSO2<Scalar>, Options> rxso2_;
|
|
Map<Sophus::Vector2<Scalar>, Options> translation_;
|
|
};
|
|
|
|
/// Specialization of Eigen::Map for ``Sim2 const``; derived from Sim2Base.
|
|
///
|
|
/// Allows us to wrap RxSO2 objects around POD array.
|
|
template <class Scalar_, int Options>
|
|
class Map<Sophus::Sim2<Scalar_> const, Options>
|
|
: public Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_> const, Options>> {
|
|
public:
|
|
using Base = Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_> const, Options>>;
|
|
using Scalar = Scalar_;
|
|
using Transformation = typename Base::Transformation;
|
|
using Point = typename Base::Point;
|
|
using HomogeneousPoint = typename Base::HomogeneousPoint;
|
|
using Tangent = typename Base::Tangent;
|
|
using Adjoint = typename Base::Adjoint;
|
|
|
|
using Base::operator*=;
|
|
using Base::operator*;
|
|
|
|
SOPHUS_FUNC Map(Scalar const* coeffs)
|
|
: rxso2_(coeffs),
|
|
translation_(coeffs + Sophus::RxSO2<Scalar>::num_parameters) {}
|
|
|
|
/// Accessor of RxSO2
|
|
///
|
|
SOPHUS_FUNC Map<Sophus::RxSO2<Scalar> const, Options> const& rxso2() const {
|
|
return rxso2_;
|
|
}
|
|
|
|
/// Accessor of translation vector
|
|
///
|
|
SOPHUS_FUNC Map<Sophus::Vector2<Scalar> const, Options> const& translation()
|
|
const {
|
|
return translation_;
|
|
}
|
|
|
|
protected:
|
|
Map<Sophus::RxSO2<Scalar> const, Options> const rxso2_;
|
|
Map<Sophus::Vector2<Scalar> const, Options> const translation_;
|
|
};
|
|
} // namespace Eigen
|
|
|
|
#endif
|