ORB-SLAM3-UESTC/Workspace/Thirdparty/Sophus/sophus/num_diff.hpp

94 lines
2.8 KiB
C++

/// @file
/// Numerical differentiation using finite differences
#ifndef SOPHUS_NUM_DIFF_HPP
#define SOPHUS_NUM_DIFF_HPP
#include <functional>
#include <type_traits>
#include <utility>
#include "types.hpp"
namespace Sophus {
namespace details {
template <class Scalar>
class Curve {
public:
template <class Fn>
static auto num_diff(Fn curve, Scalar t, Scalar h) -> decltype(curve(t)) {
using ReturnType = decltype(curve(t));
static_assert(std::is_floating_point<Scalar>::value,
"Scalar must be a floating point type.");
static_assert(IsFloatingPoint<ReturnType>::value,
"ReturnType must be either a floating point scalar, "
"vector or matrix.");
return (curve(t + h) - curve(t - h)) / (Scalar(2) * h);
}
};
template <class Scalar, int N, int M>
class VectorField {
public:
static Eigen::Matrix<Scalar, N, M> num_diff(
std::function<Sophus::Vector<Scalar, N>(Sophus::Vector<Scalar, M>)>
vector_field,
Sophus::Vector<Scalar, M> const& a, Scalar eps) {
static_assert(std::is_floating_point<Scalar>::value,
"Scalar must be a floating point type.");
Eigen::Matrix<Scalar, N, M> J;
Sophus::Vector<Scalar, M> h;
h.setZero();
for (int i = 0; i < M; ++i) {
h[i] = eps;
J.col(i) =
(vector_field(a + h) - vector_field(a - h)) / (Scalar(2) * eps);
h[i] = Scalar(0);
}
return J;
}
};
template <class Scalar, int N>
class VectorField<Scalar, N, 1> {
public:
static Eigen::Matrix<Scalar, N, 1> num_diff(
std::function<Sophus::Vector<Scalar, N>(Scalar)> vector_field,
Scalar const& a, Scalar eps) {
return details::Curve<Scalar>::num_diff(std::move(vector_field), a, eps);
}
};
} // namespace details
/// Calculates the derivative of a curve at a point ``t``.
///
/// Here, a curve is a function from a Scalar to a Euclidean space. Thus, it
/// returns either a Scalar, a vector or a matrix.
///
template <class Scalar, class Fn>
auto curveNumDiff(Fn curve, Scalar t,
Scalar h = Constants<Scalar>::epsilonSqrt())
-> decltype(details::Curve<Scalar>::num_diff(std::move(curve), t, h)) {
return details::Curve<Scalar>::num_diff(std::move(curve), t, h);
}
/// Calculates the derivative of a vector field at a point ``a``.
///
/// Here, a vector field is a function from a vector space to another vector
/// space.
///
template <class Scalar, int N, int M, class ScalarOrVector, class Fn>
Eigen::Matrix<Scalar, N, M> vectorFieldNumDiff(
Fn vector_field, ScalarOrVector const& a,
Scalar eps = Constants<Scalar>::epsilonSqrt()) {
return details::VectorField<Scalar, N, M>::num_diff(std::move(vector_field),
a, eps);
}
} // namespace Sophus
#endif // SOPHUS_NUM_DIFF_HPP