622 lines
21 KiB
C++
622 lines
21 KiB
C++
/// @file
|
|
/// Special orthogonal group SO(2) - rotation in 2d.
|
|
|
|
#ifndef SOPHUS_SO2_HPP
|
|
#define SOPHUS_SO2_HPP
|
|
|
|
#include <complex>
|
|
#include <type_traits>
|
|
|
|
// Include only the selective set of Eigen headers that we need.
|
|
// This helps when using Sophus with unusual compilers, like nvcc.
|
|
#include <Eigen/LU>
|
|
|
|
#include "rotation_matrix.hpp"
|
|
#include "types.hpp"
|
|
|
|
namespace Sophus {
|
|
template <class Scalar_, int Options = 0>
|
|
class SO2;
|
|
using SO2d = SO2<double>;
|
|
using SO2f = SO2<float>;
|
|
} // namespace Sophus
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
template <class Scalar_, int Options_>
|
|
struct traits<Sophus::SO2<Scalar_, Options_>> {
|
|
static constexpr int Options = Options_;
|
|
using Scalar = Scalar_;
|
|
using ComplexType = Sophus::Vector2<Scalar, Options>;
|
|
};
|
|
|
|
template <class Scalar_, int Options_>
|
|
struct traits<Map<Sophus::SO2<Scalar_>, Options_>>
|
|
: traits<Sophus::SO2<Scalar_, Options_>> {
|
|
static constexpr int Options = Options_;
|
|
using Scalar = Scalar_;
|
|
using ComplexType = Map<Sophus::Vector2<Scalar>, Options>;
|
|
};
|
|
|
|
template <class Scalar_, int Options_>
|
|
struct traits<Map<Sophus::SO2<Scalar_> const, Options_>>
|
|
: traits<Sophus::SO2<Scalar_, Options_> const> {
|
|
static constexpr int Options = Options_;
|
|
using Scalar = Scalar_;
|
|
using ComplexType = Map<Sophus::Vector2<Scalar> const, Options>;
|
|
};
|
|
} // namespace internal
|
|
} // namespace Eigen
|
|
|
|
namespace Sophus {
|
|
|
|
/// SO2 base type - implements SO2 class but is storage agnostic.
|
|
///
|
|
/// SO(2) is the group of rotations in 2d. As a matrix group, it is the set of
|
|
/// matrices which are orthogonal such that ``R * R' = I`` (with ``R'`` being
|
|
/// the transpose of ``R``) and have a positive determinant. In particular, the
|
|
/// determinant is 1. Let ``theta`` be the rotation angle, the rotation matrix
|
|
/// can be written in close form:
|
|
///
|
|
/// | cos(theta) -sin(theta) |
|
|
/// | sin(theta) cos(theta) |
|
|
///
|
|
/// As a matter of fact, the first column of those matrices is isomorph to the
|
|
/// set of unit complex numbers U(1). Thus, internally, SO2 is represented as
|
|
/// complex number with length 1.
|
|
///
|
|
/// SO(2) is a compact and commutative group. First it is compact since the set
|
|
/// of rotation matrices is a closed and bounded set. Second it is commutative
|
|
/// since ``R(alpha) * R(beta) = R(beta) * R(alpha)``, simply because ``alpha +
|
|
/// beta = beta + alpha`` with ``alpha`` and ``beta`` being rotation angles
|
|
/// (about the same axis).
|
|
///
|
|
/// Class invariant: The 2-norm of ``unit_complex`` must be close to 1.
|
|
/// Technically speaking, it must hold that:
|
|
///
|
|
/// ``|unit_complex().squaredNorm() - 1| <= Constants::epsilon()``.
|
|
template <class Derived>
|
|
class SO2Base {
|
|
public:
|
|
static constexpr int Options = Eigen::internal::traits<Derived>::Options;
|
|
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
|
|
using ComplexT = typename Eigen::internal::traits<Derived>::ComplexType;
|
|
using ComplexTemporaryType = Sophus::Vector2<Scalar, Options>;
|
|
|
|
/// Degrees of freedom of manifold, number of dimensions in tangent space (one
|
|
/// since we only have in-plane rotations).
|
|
static int constexpr DoF = 1;
|
|
/// Number of internal parameters used (complex numbers are a tuples).
|
|
static int constexpr num_parameters = 2;
|
|
/// Group transformations are 2x2 matrices.
|
|
static int constexpr N = 2;
|
|
using Transformation = Matrix<Scalar, N, N>;
|
|
using Point = Vector2<Scalar>;
|
|
using HomogeneousPoint = Vector3<Scalar>;
|
|
using Line = ParametrizedLine2<Scalar>;
|
|
using Tangent = Scalar;
|
|
using Adjoint = Scalar;
|
|
|
|
/// For binary operations the return type is determined with the
|
|
/// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
|
|
/// types, as well as other compatible scalar types such as Ceres::Jet and
|
|
/// double scalars with SO2 operations.
|
|
template <typename OtherDerived>
|
|
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
|
|
Scalar, typename OtherDerived::Scalar>::ReturnType;
|
|
|
|
template <typename OtherDerived>
|
|
using SO2Product = SO2<ReturnScalar<OtherDerived>>;
|
|
|
|
template <typename PointDerived>
|
|
using PointProduct = Vector2<ReturnScalar<PointDerived>>;
|
|
|
|
template <typename HPointDerived>
|
|
using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
|
|
|
|
/// Adjoint transformation
|
|
///
|
|
/// This function return the adjoint transformation ``Ad`` of the group
|
|
/// element ``A`` such that for all ``x`` it holds that
|
|
/// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
|
|
///
|
|
/// It simply ``1``, since ``SO(2)`` is a commutative group.
|
|
///
|
|
SOPHUS_FUNC Adjoint Adj() const { return Scalar(1); }
|
|
|
|
/// Returns copy of instance casted to NewScalarType.
|
|
///
|
|
template <class NewScalarType>
|
|
SOPHUS_FUNC SO2<NewScalarType> cast() const {
|
|
return SO2<NewScalarType>(unit_complex().template cast<NewScalarType>());
|
|
}
|
|
|
|
/// This provides unsafe read/write access to internal data. SO(2) is
|
|
/// represented by a unit complex number (two parameters). When using direct
|
|
/// write access, the user needs to take care of that the complex number stays
|
|
/// normalized.
|
|
///
|
|
SOPHUS_FUNC Scalar* data() { return unit_complex_nonconst().data(); }
|
|
|
|
/// Const version of data() above.
|
|
///
|
|
SOPHUS_FUNC Scalar const* data() const { return unit_complex().data(); }
|
|
|
|
/// Returns group inverse.
|
|
///
|
|
SOPHUS_FUNC SO2<Scalar> inverse() const {
|
|
return SO2<Scalar>(unit_complex().x(), -unit_complex().y());
|
|
}
|
|
|
|
/// Logarithmic map
|
|
///
|
|
/// Computes the logarithm, the inverse of the group exponential which maps
|
|
/// element of the group (rotation matrices) to elements of the tangent space
|
|
/// (rotation angles).
|
|
///
|
|
/// To be specific, this function computes ``vee(logmat(.))`` with
|
|
/// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
|
|
/// of SO(2).
|
|
///
|
|
SOPHUS_FUNC Scalar log() const {
|
|
using std::atan2;
|
|
return atan2(unit_complex().y(), unit_complex().x());
|
|
}
|
|
|
|
/// It re-normalizes ``unit_complex`` to unit length.
|
|
///
|
|
/// Note: Because of the class invariant, there is typically no need to call
|
|
/// this function directly.
|
|
///
|
|
SOPHUS_FUNC void normalize() {
|
|
using std::sqrt;
|
|
Scalar length = sqrt(unit_complex().x() * unit_complex().x() +
|
|
unit_complex().y() * unit_complex().y());
|
|
SOPHUS_ENSURE(length >= Constants<Scalar>::epsilon(),
|
|
"Complex number should not be close to zero!");
|
|
unit_complex_nonconst().x() /= length;
|
|
unit_complex_nonconst().y() /= length;
|
|
}
|
|
|
|
/// Returns 2x2 matrix representation of the instance.
|
|
///
|
|
/// For SO(2), the matrix representation is an orthogonal matrix ``R`` with
|
|
/// ``det(R)=1``, thus the so-called "rotation matrix".
|
|
///
|
|
SOPHUS_FUNC Transformation matrix() const {
|
|
Scalar const& real = unit_complex().x();
|
|
Scalar const& imag = unit_complex().y();
|
|
Transformation R;
|
|
// clang-format off
|
|
R <<
|
|
real, -imag,
|
|
imag, real;
|
|
// clang-format on
|
|
return R;
|
|
}
|
|
|
|
/// Assignment-like operator from OtherDerived.
|
|
///
|
|
template <class OtherDerived>
|
|
SOPHUS_FUNC SO2Base<Derived>& operator=(SO2Base<OtherDerived> const& other) {
|
|
unit_complex_nonconst() = other.unit_complex();
|
|
return *this;
|
|
}
|
|
|
|
/// Group multiplication, which is rotation concatenation.
|
|
///
|
|
template <typename OtherDerived>
|
|
SOPHUS_FUNC SO2Product<OtherDerived> operator*(
|
|
SO2Base<OtherDerived> const& other) const {
|
|
using ResultT = ReturnScalar<OtherDerived>;
|
|
Scalar const lhs_real = unit_complex().x();
|
|
Scalar const lhs_imag = unit_complex().y();
|
|
typename OtherDerived::Scalar const& rhs_real = other.unit_complex().x();
|
|
typename OtherDerived::Scalar const& rhs_imag = other.unit_complex().y();
|
|
// complex multiplication
|
|
ResultT const result_real = lhs_real * rhs_real - lhs_imag * rhs_imag;
|
|
ResultT const result_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
|
|
|
|
ResultT const squared_norm =
|
|
result_real * result_real + result_imag * result_imag;
|
|
// We can assume that the squared-norm is close to 1 since we deal with a
|
|
// unit complex number. Due to numerical precision issues, there might
|
|
// be a small drift after pose concatenation. Hence, we need to renormalizes
|
|
// the complex number here.
|
|
// Since squared-norm is close to 1, we do not need to calculate the costly
|
|
// square-root, but can use an approximation around 1 (see
|
|
// http://stackoverflow.com/a/12934750 for details).
|
|
if (squared_norm != ResultT(1.0)) {
|
|
ResultT const scale = ResultT(2.0) / (ResultT(1.0) + squared_norm);
|
|
return SO2Product<OtherDerived>(result_real * scale, result_imag * scale);
|
|
}
|
|
return SO2Product<OtherDerived>(result_real, result_imag);
|
|
}
|
|
|
|
/// Group action on 2-points.
|
|
///
|
|
/// This function rotates a 2 dimensional point ``p`` by the SO2 element
|
|
/// ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
|
|
///
|
|
template <typename PointDerived,
|
|
typename = typename std::enable_if<
|
|
IsFixedSizeVector<PointDerived, 2>::value>::type>
|
|
SOPHUS_FUNC PointProduct<PointDerived> operator*(
|
|
Eigen::MatrixBase<PointDerived> const& p) const {
|
|
Scalar const& real = unit_complex().x();
|
|
Scalar const& imag = unit_complex().y();
|
|
return PointProduct<PointDerived>(real * p[0] - imag * p[1],
|
|
imag * p[0] + real * p[1]);
|
|
}
|
|
|
|
/// Group action on homogeneous 2-points.
|
|
///
|
|
/// This function rotates a homogeneous 2 dimensional point ``p`` by the SO2
|
|
/// element ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
|
|
///
|
|
template <typename HPointDerived,
|
|
typename = typename std::enable_if<
|
|
IsFixedSizeVector<HPointDerived, 3>::value>::type>
|
|
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
|
|
Eigen::MatrixBase<HPointDerived> const& p) const {
|
|
Scalar const& real = unit_complex().x();
|
|
Scalar const& imag = unit_complex().y();
|
|
return HomogeneousPointProduct<HPointDerived>(
|
|
real * p[0] - imag * p[1], imag * p[0] + real * p[1], p[2]);
|
|
}
|
|
|
|
/// Group action on lines.
|
|
///
|
|
/// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO2
|
|
/// element:
|
|
///
|
|
/// Both direction ``d`` and origin ``o`` are rotated as a 2 dimensional point
|
|
///
|
|
SOPHUS_FUNC Line operator*(Line const& l) const {
|
|
return Line((*this) * l.origin(), (*this) * l.direction());
|
|
}
|
|
|
|
/// In-place group multiplication. This method is only valid if the return
|
|
/// type of the multiplication is compatible with this SO2's Scalar type.
|
|
///
|
|
template <typename OtherDerived,
|
|
typename = typename std::enable_if<
|
|
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
|
|
SOPHUS_FUNC SO2Base<Derived> operator*=(SO2Base<OtherDerived> const& other) {
|
|
*static_cast<Derived*>(this) = *this * other;
|
|
return *this;
|
|
}
|
|
|
|
/// Returns derivative of this * SO2::exp(x) wrt. x at x=0.
|
|
///
|
|
SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
|
|
const {
|
|
return Matrix<Scalar, num_parameters, DoF>(-unit_complex()[1],
|
|
unit_complex()[0]);
|
|
}
|
|
|
|
/// Returns internal parameters of SO(2).
|
|
///
|
|
/// It returns (c[0], c[1]), with c being the unit complex number.
|
|
///
|
|
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
|
|
return unit_complex();
|
|
}
|
|
|
|
/// Takes in complex number / tuple and normalizes it.
|
|
///
|
|
/// Precondition: The complex number must not be close to zero.
|
|
///
|
|
SOPHUS_FUNC void setComplex(Point const& complex) {
|
|
unit_complex_nonconst() = complex;
|
|
normalize();
|
|
}
|
|
|
|
/// Accessor of unit quaternion.
|
|
///
|
|
SOPHUS_FUNC
|
|
ComplexT const& unit_complex() const {
|
|
return static_cast<Derived const*>(this)->unit_complex();
|
|
}
|
|
|
|
private:
|
|
/// Mutator of unit_complex is private to ensure class invariant. That is
|
|
/// the complex number must stay close to unit length.
|
|
///
|
|
SOPHUS_FUNC
|
|
ComplexT& unit_complex_nonconst() {
|
|
return static_cast<Derived*>(this)->unit_complex_nonconst();
|
|
}
|
|
};
|
|
|
|
/// SO2 using default storage; derived from SO2Base.
|
|
template <class Scalar_, int Options>
|
|
class SO2 : public SO2Base<SO2<Scalar_, Options>> {
|
|
public:
|
|
using Base = SO2Base<SO2<Scalar_, Options>>;
|
|
static int constexpr DoF = Base::DoF;
|
|
static int constexpr num_parameters = Base::num_parameters;
|
|
|
|
using Scalar = Scalar_;
|
|
using Transformation = typename Base::Transformation;
|
|
using Point = typename Base::Point;
|
|
using HomogeneousPoint = typename Base::HomogeneousPoint;
|
|
using Tangent = typename Base::Tangent;
|
|
using Adjoint = typename Base::Adjoint;
|
|
using ComplexMember = Vector2<Scalar, Options>;
|
|
|
|
/// ``Base`` is friend so unit_complex_nonconst can be accessed from ``Base``.
|
|
friend class SO2Base<SO2<Scalar, Options>>;
|
|
|
|
using Base::operator=;
|
|
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
/// Default constructor initializes unit complex number to identity rotation.
|
|
///
|
|
SOPHUS_FUNC SO2() : unit_complex_(Scalar(1), Scalar(0)) {}
|
|
|
|
/// Copy constructor
|
|
///
|
|
SOPHUS_FUNC SO2(SO2 const& other) = default;
|
|
|
|
/// Copy-like constructor from OtherDerived.
|
|
///
|
|
template <class OtherDerived>
|
|
SOPHUS_FUNC SO2(SO2Base<OtherDerived> const& other)
|
|
: unit_complex_(other.unit_complex()) {}
|
|
|
|
/// Constructor from rotation matrix
|
|
///
|
|
/// Precondition: rotation matrix need to be orthogonal with determinant of 1.
|
|
///
|
|
SOPHUS_FUNC explicit SO2(Transformation const& R)
|
|
: unit_complex_(Scalar(0.5) * (R(0, 0) + R(1, 1)),
|
|
Scalar(0.5) * (R(1, 0) - R(0, 1))) {
|
|
SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %", R);
|
|
SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %",
|
|
R.determinant());
|
|
}
|
|
|
|
/// Constructor from pair of real and imaginary number.
|
|
///
|
|
/// Precondition: The pair must not be close to zero.
|
|
///
|
|
SOPHUS_FUNC SO2(Scalar const& real, Scalar const& imag)
|
|
: unit_complex_(real, imag) {
|
|
Base::normalize();
|
|
}
|
|
|
|
/// Constructor from 2-vector.
|
|
///
|
|
/// Precondition: The vector must not be close to zero.
|
|
///
|
|
template <class D>
|
|
SOPHUS_FUNC explicit SO2(Eigen::MatrixBase<D> const& complex)
|
|
: unit_complex_(complex) {
|
|
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
|
|
"must be same Scalar type");
|
|
Base::normalize();
|
|
}
|
|
|
|
/// Constructor from an rotation angle.
|
|
///
|
|
SOPHUS_FUNC explicit SO2(Scalar theta) {
|
|
unit_complex_nonconst() = SO2<Scalar>::exp(theta).unit_complex();
|
|
}
|
|
|
|
/// Accessor of unit complex number
|
|
///
|
|
SOPHUS_FUNC ComplexMember const& unit_complex() const {
|
|
return unit_complex_;
|
|
}
|
|
|
|
/// Group exponential
|
|
///
|
|
/// This functions takes in an element of tangent space (= rotation angle
|
|
/// ``theta``) and returns the corresponding element of the group SO(2).
|
|
///
|
|
/// To be more specific, this function computes ``expmat(hat(omega))``
|
|
/// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
|
|
/// hat()-operator of SO(2).
|
|
///
|
|
SOPHUS_FUNC static SO2<Scalar> exp(Tangent const& theta) {
|
|
using std::cos;
|
|
using std::sin;
|
|
return SO2<Scalar>(cos(theta), sin(theta));
|
|
}
|
|
|
|
/// Returns derivative of exp(x) wrt. x.
|
|
///
|
|
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
|
|
Tangent const& theta) {
|
|
using std::cos;
|
|
using std::sin;
|
|
return Sophus::Matrix<Scalar, num_parameters, DoF>(-sin(theta), cos(theta));
|
|
}
|
|
|
|
/// Returns derivative of exp(x) wrt. x_i at x=0.
|
|
///
|
|
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
|
|
Dx_exp_x_at_0() {
|
|
return Sophus::Matrix<Scalar, num_parameters, DoF>(Scalar(0), Scalar(1));
|
|
}
|
|
|
|
/// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
|
|
///
|
|
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int) {
|
|
return generator();
|
|
}
|
|
|
|
/// Returns the infinitesimal generators of SO(2).
|
|
///
|
|
/// The infinitesimal generators of SO(2) is:
|
|
///
|
|
/// | 0 1 |
|
|
/// | -1 0 |
|
|
///
|
|
SOPHUS_FUNC static Transformation generator() { return hat(Scalar(1)); }
|
|
|
|
/// hat-operator
|
|
///
|
|
/// It takes in the scalar representation ``theta`` (= rotation angle) and
|
|
/// returns the corresponding matrix representation of Lie algebra element.
|
|
///
|
|
/// Formally, the hat()-operator of SO(2) is defined as
|
|
///
|
|
/// ``hat(.): R^2 -> R^{2x2}, hat(theta) = theta * G``
|
|
///
|
|
/// with ``G`` being the infinitesimal generator of SO(2).
|
|
///
|
|
/// The corresponding inverse is the vee()-operator, see below.
|
|
///
|
|
SOPHUS_FUNC static Transformation hat(Tangent const& theta) {
|
|
Transformation Omega;
|
|
// clang-format off
|
|
Omega <<
|
|
Scalar(0), -theta,
|
|
theta, Scalar(0);
|
|
// clang-format on
|
|
return Omega;
|
|
}
|
|
|
|
/// Returns closed SO2 given arbitrary 2x2 matrix.
|
|
///
|
|
template <class S = Scalar>
|
|
static SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, SO2>
|
|
fitToSO2(Transformation const& R) {
|
|
return SO2(makeRotationMatrix(R));
|
|
}
|
|
|
|
/// Lie bracket
|
|
///
|
|
/// It returns the Lie bracket of SO(2). Since SO(2) is a commutative group,
|
|
/// the Lie bracket is simple ``0``.
|
|
///
|
|
SOPHUS_FUNC static Tangent lieBracket(Tangent const&, Tangent const&) {
|
|
return Scalar(0);
|
|
}
|
|
|
|
/// Draw uniform sample from SO(2) manifold.
|
|
///
|
|
template <class UniformRandomBitGenerator>
|
|
static SO2 sampleUniform(UniformRandomBitGenerator& generator) {
|
|
static_assert(IsUniformRandomBitGenerator<UniformRandomBitGenerator>::value,
|
|
"generator must meet the UniformRandomBitGenerator concept");
|
|
std::uniform_real_distribution<Scalar> uniform(-Constants<Scalar>::pi(),
|
|
Constants<Scalar>::pi());
|
|
return SO2(uniform(generator));
|
|
}
|
|
|
|
/// vee-operator
|
|
///
|
|
/// It takes the 2x2-matrix representation ``Omega`` and maps it to the
|
|
/// corresponding scalar representation of Lie algebra.
|
|
///
|
|
/// This is the inverse of the hat()-operator, see above.
|
|
///
|
|
/// Precondition: ``Omega`` must have the following structure:
|
|
///
|
|
/// | 0 -a |
|
|
/// | a 0 |
|
|
///
|
|
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
|
|
using std::abs;
|
|
return Omega(1, 0);
|
|
}
|
|
|
|
protected:
|
|
/// Mutator of complex number is protected to ensure class invariant.
|
|
///
|
|
SOPHUS_FUNC ComplexMember& unit_complex_nonconst() { return unit_complex_; }
|
|
|
|
ComplexMember unit_complex_;
|
|
};
|
|
|
|
} // namespace Sophus
|
|
|
|
namespace Eigen {
|
|
|
|
/// Specialization of Eigen::Map for ``SO2``; derived from SO2Base.
|
|
///
|
|
/// Allows us to wrap SO2 objects around POD array (e.g. external c style
|
|
/// complex number / tuple).
|
|
template <class Scalar_, int Options>
|
|
class Map<Sophus::SO2<Scalar_>, Options>
|
|
: public Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>> {
|
|
public:
|
|
using Base = Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>>;
|
|
using Scalar = Scalar_;
|
|
|
|
using Transformation = typename Base::Transformation;
|
|
using Point = typename Base::Point;
|
|
using HomogeneousPoint = typename Base::HomogeneousPoint;
|
|
using Tangent = typename Base::Tangent;
|
|
using Adjoint = typename Base::Adjoint;
|
|
|
|
/// ``Base`` is friend so unit_complex_nonconst can be accessed from ``Base``.
|
|
friend class Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>>;
|
|
|
|
using Base::operator=;
|
|
using Base::operator*=;
|
|
using Base::operator*;
|
|
|
|
SOPHUS_FUNC
|
|
Map(Scalar* coeffs) : unit_complex_(coeffs) {}
|
|
|
|
/// Accessor of unit complex number.
|
|
///
|
|
SOPHUS_FUNC
|
|
Map<Sophus::Vector2<Scalar>, Options> const& unit_complex() const {
|
|
return unit_complex_;
|
|
}
|
|
|
|
protected:
|
|
/// Mutator of unit_complex is protected to ensure class invariant.
|
|
///
|
|
SOPHUS_FUNC
|
|
Map<Sophus::Vector2<Scalar>, Options>& unit_complex_nonconst() {
|
|
return unit_complex_;
|
|
}
|
|
|
|
Map<Matrix<Scalar, 2, 1>, Options> unit_complex_;
|
|
};
|
|
|
|
/// Specialization of Eigen::Map for ``SO2 const``; derived from SO2Base.
|
|
///
|
|
/// Allows us to wrap SO2 objects around POD array (e.g. external c style
|
|
/// complex number / tuple).
|
|
template <class Scalar_, int Options>
|
|
class Map<Sophus::SO2<Scalar_> const, Options>
|
|
: public Sophus::SO2Base<Map<Sophus::SO2<Scalar_> const, Options>> {
|
|
public:
|
|
using Base = Sophus::SO2Base<Map<Sophus::SO2<Scalar_> const, Options>>;
|
|
using Scalar = Scalar_;
|
|
using Transformation = typename Base::Transformation;
|
|
using Point = typename Base::Point;
|
|
using HomogeneousPoint = typename Base::HomogeneousPoint;
|
|
using Tangent = typename Base::Tangent;
|
|
using Adjoint = typename Base::Adjoint;
|
|
|
|
using Base::operator*=;
|
|
using Base::operator*;
|
|
|
|
SOPHUS_FUNC Map(Scalar const* coeffs) : unit_complex_(coeffs) {}
|
|
|
|
/// Accessor of unit complex number.
|
|
///
|
|
SOPHUS_FUNC Map<Sophus::Vector2<Scalar> const, Options> const& unit_complex()
|
|
const {
|
|
return unit_complex_;
|
|
}
|
|
|
|
protected:
|
|
/// Mutator of unit_complex is protected to ensure class invariant.
|
|
///
|
|
Map<Matrix<Scalar, 2, 1> const, Options> const unit_complex_;
|
|
};
|
|
} // namespace Eigen
|
|
|
|
#endif // SOPHUS_SO2_HPP
|