230 lines
10 KiB
Python
230 lines
10 KiB
Python
|
# Modified by Raul Mur-Artal
|
||
|
# Automatically compute the optimal scale factor for monocular VO/SLAM.
|
||
|
|
||
|
# Software License Agreement (BSD License)
|
||
|
#
|
||
|
# Copyright (c) 2013, Juergen Sturm, TUM
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions
|
||
|
# are met:
|
||
|
#
|
||
|
# * Redistributions of source code must retain the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer.
|
||
|
# * Redistributions in binary form must reproduce the above
|
||
|
# copyright notice, this list of conditions and the following
|
||
|
# disclaimer in the documentation and/or other materials provided
|
||
|
# with the distribution.
|
||
|
# * Neither the name of TUM nor the names of its
|
||
|
# contributors may be used to endorse or promote products derived
|
||
|
# from this software without specific prior written permission.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.
|
||
|
#
|
||
|
# Requirements:
|
||
|
# sudo apt-get install python-argparse
|
||
|
|
||
|
"""
|
||
|
This script computes the absolute trajectory error from the ground truth
|
||
|
trajectory and the estimated trajectory.
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
import numpy
|
||
|
import argparse
|
||
|
import associate
|
||
|
|
||
|
def align(model,data):
|
||
|
"""Align two trajectories using the method of Horn (closed-form).
|
||
|
|
||
|
Input:
|
||
|
model -- first trajectory (3xn)
|
||
|
data -- second trajectory (3xn)
|
||
|
|
||
|
Output:
|
||
|
rot -- rotation matrix (3x3)
|
||
|
trans -- translation vector (3x1)
|
||
|
trans_error -- translational error per point (1xn)
|
||
|
"""
|
||
|
|
||
|
|
||
|
numpy.set_printoptions(precision=3,suppress=True)
|
||
|
model_zerocentered = model - model.mean(1)
|
||
|
data_zerocentered = data - data.mean(1)
|
||
|
|
||
|
W = numpy.zeros( (3,3) )
|
||
|
for column in range(model.shape[1]):
|
||
|
W += numpy.outer(model_zerocentered[:,column],data_zerocentered[:,column])
|
||
|
U,d,Vh = numpy.linalg.linalg.svd(W.transpose())
|
||
|
S = numpy.matrix(numpy.identity( 3 ))
|
||
|
if(numpy.linalg.det(U) * numpy.linalg.det(Vh)<0):
|
||
|
S[2,2] = -1
|
||
|
rot = U*S*Vh
|
||
|
|
||
|
rotmodel = rot*model_zerocentered
|
||
|
dots = 0.0
|
||
|
norms = 0.0
|
||
|
|
||
|
for column in range(data_zerocentered.shape[1]):
|
||
|
dots += numpy.dot(data_zerocentered[:,column].transpose(),rotmodel[:,column])
|
||
|
normi = numpy.linalg.norm(model_zerocentered[:,column])
|
||
|
norms += normi*normi
|
||
|
|
||
|
s = float(dots/norms)
|
||
|
|
||
|
transGT = data.mean(1) - s*rot * model.mean(1)
|
||
|
trans = data.mean(1) - rot * model.mean(1)
|
||
|
|
||
|
model_alignedGT = s*rot * model + transGT
|
||
|
model_aligned = rot * model + trans
|
||
|
|
||
|
alignment_errorGT = model_alignedGT - data
|
||
|
alignment_error = model_aligned - data
|
||
|
|
||
|
trans_errorGT = numpy.sqrt(numpy.sum(numpy.multiply(alignment_errorGT,alignment_errorGT),0)).A[0]
|
||
|
trans_error = numpy.sqrt(numpy.sum(numpy.multiply(alignment_error,alignment_error),0)).A[0]
|
||
|
|
||
|
return rot,transGT,trans_errorGT,trans,trans_error, s
|
||
|
|
||
|
def plot_traj(ax,stamps,traj,style,color,label):
|
||
|
"""
|
||
|
Plot a trajectory using matplotlib.
|
||
|
|
||
|
Input:
|
||
|
ax -- the plot
|
||
|
stamps -- time stamps (1xn)
|
||
|
traj -- trajectory (3xn)
|
||
|
style -- line style
|
||
|
color -- line color
|
||
|
label -- plot legend
|
||
|
|
||
|
"""
|
||
|
stamps.sort()
|
||
|
interval = numpy.median([s-t for s,t in zip(stamps[1:],stamps[:-1])])
|
||
|
x = []
|
||
|
y = []
|
||
|
last = stamps[0]
|
||
|
for i in range(len(stamps)):
|
||
|
if stamps[i]-last < 2*interval:
|
||
|
x.append(traj[i][0])
|
||
|
y.append(traj[i][1])
|
||
|
elif len(x)>0:
|
||
|
ax.plot(x,y,style,color=color,label=label)
|
||
|
label=""
|
||
|
x=[]
|
||
|
y=[]
|
||
|
last= stamps[i]
|
||
|
if len(x)>0:
|
||
|
ax.plot(x,y,style,color=color,label=label)
|
||
|
|
||
|
|
||
|
if __name__=="__main__":
|
||
|
# parse command line
|
||
|
parser = argparse.ArgumentParser(description='''
|
||
|
This script computes the absolute trajectory error from the ground truth trajectory and the estimated trajectory.
|
||
|
''')
|
||
|
parser.add_argument('first_file', help='ground truth trajectory (format: timestamp tx ty tz qx qy qz qw)')
|
||
|
parser.add_argument('second_file', help='estimated trajectory (format: timestamp tx ty tz qx qy qz qw)')
|
||
|
parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)
|
||
|
parser.add_argument('--scale', help='scaling factor for the second trajectory (default: 1.0)',default=1.0)
|
||
|
parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 10000000 ns)',default=20000000)
|
||
|
parser.add_argument('--save', help='save aligned second trajectory to disk (format: stamp2 x2 y2 z2)')
|
||
|
parser.add_argument('--save_associations', help='save associated first and aligned second trajectory to disk (format: stamp1 x1 y1 z1 stamp2 x2 y2 z2)')
|
||
|
parser.add_argument('--plot', help='plot the first and the aligned second trajectory to an image (format: png)')
|
||
|
parser.add_argument('--verbose', help='print all evaluation data (otherwise, only the RMSE absolute translational error in meters after alignment will be printed)', action='store_true')
|
||
|
parser.add_argument('--verbose2', help='print scale eror and RMSE absolute translational error in meters after alignment with and without scale correction', action='store_true')
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
first_list = associate.read_file_list(args.first_file, False)
|
||
|
second_list = associate.read_file_list(args.second_file, False)
|
||
|
|
||
|
matches = associate.associate(first_list, second_list,float(args.offset),float(args.max_difference))
|
||
|
if len(matches)<2:
|
||
|
sys.exit("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory! Did you choose the correct sequence?")
|
||
|
first_xyz = numpy.matrix([[float(value) for value in first_list[a][0:3]] for a,b in matches]).transpose()
|
||
|
second_xyz = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for a,b in matches]).transpose()
|
||
|
dictionary_items = second_list.items()
|
||
|
sorted_second_list = sorted(dictionary_items)
|
||
|
|
||
|
second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in sorted_second_list[i][1][0:3]] for i in range(len(sorted_second_list))]).transpose() # sorted_second_list.keys()]).transpose()
|
||
|
rot,transGT,trans_errorGT,trans,trans_error, scale = align(second_xyz,first_xyz)
|
||
|
|
||
|
second_xyz_aligned = scale * rot * second_xyz + trans
|
||
|
second_xyz_notscaled = rot * second_xyz + trans
|
||
|
second_xyz_notscaled_full = rot * second_xyz_full + trans
|
||
|
first_stamps = first_list.keys()
|
||
|
first_stamps.sort()
|
||
|
first_xyz_full = numpy.matrix([[float(value) for value in first_list[b][0:3]] for b in first_stamps]).transpose()
|
||
|
|
||
|
second_stamps = second_list.keys()
|
||
|
second_stamps.sort()
|
||
|
second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for b in second_stamps]).transpose()
|
||
|
second_xyz_full_aligned = scale * rot * second_xyz_full + trans
|
||
|
|
||
|
if args.verbose:
|
||
|
print "compared_pose_pairs %d pairs"%(len(trans_error))
|
||
|
|
||
|
print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error))
|
||
|
print "absolute_translational_error.mean %f m"%numpy.mean(trans_error)
|
||
|
print "absolute_translational_error.median %f m"%numpy.median(trans_error)
|
||
|
print "absolute_translational_error.std %f m"%numpy.std(trans_error)
|
||
|
print "absolute_translational_error.min %f m"%numpy.min(trans_error)
|
||
|
print "absolute_translational_error.max %f m"%numpy.max(trans_error)
|
||
|
print "max idx: %i" %numpy.argmax(trans_error)
|
||
|
else:
|
||
|
# print "%f, %f " % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
|
||
|
# print "%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
|
||
|
print "%f,%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale, numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT)))
|
||
|
# print "%f" % len(trans_error)
|
||
|
if args.verbose2:
|
||
|
print "compared_pose_pairs %d pairs"%(len(trans_error))
|
||
|
print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error))
|
||
|
print "absolute_translational_errorGT.rmse %f m"%numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT))
|
||
|
|
||
|
if args.save_associations:
|
||
|
file = open(args.save_associations,"w")
|
||
|
file.write("\n".join(["%f %f %f %f %f %f %f %f"%(a,x1,y1,z1,b,x2,y2,z2) for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A)]))
|
||
|
file.close()
|
||
|
|
||
|
if args.save:
|
||
|
file = open(args.save,"w")
|
||
|
file.write("\n".join(["%f "%stamp+" ".join(["%f"%d for d in line]) for stamp,line in zip(second_stamps,second_xyz_notscaled_full.transpose().A)]))
|
||
|
file.close()
|
||
|
|
||
|
if args.plot:
|
||
|
import matplotlib
|
||
|
matplotlib.use('Agg')
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.pylab as pylab
|
||
|
from matplotlib.patches import Ellipse
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
plot_traj(ax,first_stamps,first_xyz_full.transpose().A,'-',"black","ground truth")
|
||
|
plot_traj(ax,second_stamps,second_xyz_full_aligned.transpose().A,'-',"blue","estimated")
|
||
|
label="difference"
|
||
|
for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A):
|
||
|
ax.plot([x1,x2],[y1,y2],'-',color="red",label=label)
|
||
|
label=""
|
||
|
|
||
|
ax.legend()
|
||
|
|
||
|
ax.set_xlabel('x [m]')
|
||
|
ax.set_ylabel('y [m]')
|
||
|
plt.axis('equal')
|
||
|
plt.savefig(args.plot,format="pdf")
|
||
|
|
||
|
|
||
|
|