ORB-SLAM3/Examples_old/Stereo-Inertial/stereo_inertial_tum_vi.cc

354 lines
12 KiB
C++
Raw Normal View History

2023-11-28 16:42:26 +08:00
/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include<iostream>
#include<algorithm>
#include<fstream>
#include<chrono>
#include <ctime>
#include <sstream>
#include<opencv2/core/core.hpp>
#include<System.h>
#include "ImuTypes.h"
using namespace std;
void LoadImagesTUMVI(const string &strPathLeft, const string &strPathRight, const string &strPathTimes,
vector<string> &vstrImageLeft, vector<string> &vstrImageRight, vector<double> &vTimeStamps);
void LoadIMU(const string &strImuPath, vector<double> &vTimeStamps, vector<cv::Point3f> &vAcc, vector<cv::Point3f> &vGyro);
double ttrack_tot = 0;
int main(int argc, char **argv)
{
const int num_seq = (argc-3)/4;
cout << "num_seq = " << num_seq << endl;
bool bFileName= (((argc-3) % 4) == 1);
string file_name;
if (bFileName)
file_name = string(argv[argc-1]);
if(argc < 7)
{
cerr << endl << "Usage: ./stereo_inertial_tum_vi path_to_vocabulary path_to_settings path_to_image_folder_1 path_to_image_folder_2 path_to_times_file path_to_imu_data (trajectory_file_name)" << endl;
return 1;
}
// Load all sequences:
int seq;
vector< vector<string> > vstrImageLeftFilenames;
vector< vector<string> > vstrImageRightFilenames;
vector< vector<double> > vTimestampsCam;
vector< vector<cv::Point3f> > vAcc, vGyro;
vector< vector<double> > vTimestampsImu;
vector<int> nImages;
vector<int> nImu;
vector<int> first_imu(num_seq,0);
vstrImageLeftFilenames.resize(num_seq);
vstrImageRightFilenames.resize(num_seq);
vTimestampsCam.resize(num_seq);
vAcc.resize(num_seq);
vGyro.resize(num_seq);
vTimestampsImu.resize(num_seq);
nImages.resize(num_seq);
nImu.resize(num_seq);
int tot_images = 0;
for (seq = 0; seq<num_seq; seq++)
{
cout << "Loading images for sequence " << seq << "...";
LoadImagesTUMVI(string(argv[4*(seq+1)-1]), string(argv[4*(seq+1)]), string(argv[4*(seq+1)+1]), vstrImageLeftFilenames[seq], vstrImageRightFilenames[seq], vTimestampsCam[seq]);
cout << "Total images: " << vstrImageLeftFilenames[seq].size() << endl;
cout << "Total cam ts: " << vTimestampsCam[seq].size() << endl;
cout << "first cam ts: " << vTimestampsCam[seq][0] << endl;
cout << "LOADED!" << endl;
cout << "Loading IMU for sequence " << seq << "...";
LoadIMU(string(argv[4*(seq+1)+2]), vTimestampsImu[seq], vAcc[seq], vGyro[seq]);
cout << "Total IMU meas: " << vTimestampsImu[seq].size() << endl;
cout << "first IMU ts: " << vTimestampsImu[seq][0] << endl;
cout << "LOADED!" << endl;
nImages[seq] = vstrImageLeftFilenames[seq].size();
tot_images += nImages[seq];
nImu[seq] = vTimestampsImu[seq].size();
if((nImages[seq]<=0)||(nImu[seq]<=0))
{
cerr << "ERROR: Failed to load images or IMU for sequence" << seq << endl;
return 1;
}
// Find first imu to be considered, supposing imu measurements start first
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][0])
first_imu[seq]++;
first_imu[seq]--; // first imu measurement to be considered
}
// Vector for tracking time statistics
vector<float> vTimesTrack;
vTimesTrack.resize(tot_images);
cout << endl << "-------" << endl;
cout.precision(17);
/*cout << "Start processing sequence ..." << endl;
cout << "Images in the sequence: " << nImages << endl;
cout << "IMU data in the sequence: " << nImu << endl << endl;*/
// Create SLAM system. It initializes all system threads and gets ready to process frames.
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_STEREO, true, 0, file_name);
float imageScale = SLAM.GetImageScale();
double t_resize = 0.f;
double t_track = 0.f;
int proccIm = 0;
for (seq = 0; seq<num_seq; seq++)
{
// Main loop
cv::Mat imLeft, imRight;
vector<ORB_SLAM3::IMU::Point> vImuMeas;
proccIm = 0;
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(3.0, cv::Size(8, 8));
for(int ni=0; ni<nImages[seq]; ni++, proccIm++)
{
// Read image from file
imLeft = cv::imread(vstrImageLeftFilenames[seq][ni],cv::IMREAD_GRAYSCALE);
imRight = cv::imread(vstrImageRightFilenames[seq][ni],cv::IMREAD_GRAYSCALE);
if(imageScale != 1.f)
{
#ifdef REGISTER_TIMES
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t_Start_Resize = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t_Start_Resize = std::chrono::monotonic_clock::now();
#endif
#endif
int width = imLeft.cols * imageScale;
int height = imLeft.rows * imageScale;
cv::resize(imLeft, imLeft, cv::Size(width, height));
cv::resize(imRight, imRight, cv::Size(width, height));
#ifdef REGISTER_TIMES
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t_End_Resize = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t_End_Resize = std::chrono::monotonic_clock::now();
#endif
t_resize = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Resize - t_Start_Resize).count();
SLAM.InsertResizeTime(t_resize);
#endif
}
// clahe
clahe->apply(imLeft,imLeft);
clahe->apply(imRight,imRight);
double tframe = vTimestampsCam[seq][ni];
if(imLeft.empty() || imRight.empty())
{
cerr << endl << "Failed to load image at: "
<< vstrImageLeftFilenames[seq][ni] << endl;
return 1;
}
// Load imu measurements from previous frame
vImuMeas.clear();
if(ni>0)
{
// cout << "t_cam " << tframe << endl;
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][ni])
{
// vImuMeas.push_back(ORB_SLAM3::IMU::Point(vAcc[first_imu],vGyro[first_imu],vTimestampsImu[first_imu]));
vImuMeas.push_back(ORB_SLAM3::IMU::Point(vAcc[seq][first_imu[seq]].x,vAcc[seq][first_imu[seq]].y,vAcc[seq][first_imu[seq]].z,
vGyro[seq][first_imu[seq]].x,vGyro[seq][first_imu[seq]].y,vGyro[seq][first_imu[seq]].z,
vTimestampsImu[seq][first_imu[seq]]));
// cout << "t_imu = " << fixed << vImuMeas.back().t << endl;
first_imu[seq]++;
}
}
/*cout << "first imu: " << first_imu[seq] << endl;
cout << "first imu time: " << fixed << vTimestampsImu[seq][0] << endl;
cout << "size vImu: " << vImuMeas.size() << endl;*/
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif
// Pass the image to the SLAM system
SLAM.TrackStereo(imLeft,imRight,tframe,vImuMeas);
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif
#ifdef REGISTER_TIMES
t_track = t_resize + std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t2 - t1).count();
SLAM.InsertTrackTime(t_track);
#endif
double ttrack= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
ttrack_tot += ttrack;
// std::cout << "ttrack: " << ttrack << std::endl;
vTimesTrack[ni]=ttrack;
// Wait to load the next frame
double T=0;
if(ni<nImages[seq]-1)
T = vTimestampsCam[seq][ni+1]-tframe;
else if(ni>0)
T = tframe-vTimestampsCam[seq][ni-1];
if(ttrack<T)
usleep((T-ttrack)*1e6); // 1e6
}
if(seq < num_seq - 1)
{
cout << "Changing the dataset" << endl;
SLAM.ChangeDataset();
}
}
// Stop all threads
SLAM.Shutdown();
// Tracking time statistics
// Save camera trajectory
std::chrono::system_clock::time_point scNow = std::chrono::system_clock::now();
std::time_t now = std::chrono::system_clock::to_time_t(scNow);
std::stringstream ss;
ss << now;
if (bFileName)
{
const string kf_file = "kf_" + string(argv[argc-1]) + ".txt";
const string f_file = "f_" + string(argv[argc-1]) + ".txt";
SLAM.SaveTrajectoryEuRoC(f_file);
SLAM.SaveKeyFrameTrajectoryEuRoC(kf_file);
}
else
{
SLAM.SaveTrajectoryEuRoC("CameraTrajectory.txt");
SLAM.SaveKeyFrameTrajectoryEuRoC("KeyFrameTrajectory.txt");
}
sort(vTimesTrack.begin(),vTimesTrack.end());
float totaltime = 0;
for(int ni=0; ni<nImages[0]; ni++)
{
totaltime+=vTimesTrack[ni];
}
cout << "-------" << endl << endl;
cout << "median tracking time: " << vTimesTrack[nImages[0]/2] << endl;
cout << "mean tracking time: " << totaltime/proccIm << endl;
return 0;
}
void LoadImagesTUMVI(const string &strPathLeft, const string &strPathRight, const string &strPathTimes,
vector<string> &vstrImageLeft, vector<string> &vstrImageRight, vector<double> &vTimeStamps)
{
ifstream fTimes;
cout << strPathLeft << endl;
cout << strPathRight << endl;
cout << strPathTimes << endl;
fTimes.open(strPathTimes.c_str());
vTimeStamps.reserve(5000);
vstrImageLeft.reserve(5000);
vstrImageRight.reserve(5000);
while(!fTimes.eof())
{
string s;
getline(fTimes,s);
if(!s.empty())
{
if (s[0] == '#')
continue;
int pos = s.find(' ');
string item = s.substr(0, pos);
vstrImageLeft.push_back(strPathLeft + "/" + item + ".png");
vstrImageRight.push_back(strPathRight + "/" + item + ".png");
double t = stod(item);
vTimeStamps.push_back(t/1e9);
}
}
}
void LoadIMU(const string &strImuPath, vector<double> &vTimeStamps, vector<cv::Point3f> &vAcc, vector<cv::Point3f> &vGyro)
{
ifstream fImu;
fImu.open(strImuPath.c_str());
vTimeStamps.reserve(5000);
vAcc.reserve(5000);
vGyro.reserve(5000);
while(!fImu.eof())
{
string s;
getline(fImu,s);
if (s[0] == '#')
continue;
if(!s.empty())
{
string item;
size_t pos = 0;
double data[7];
int count = 0;
while ((pos = s.find(',')) != string::npos) {
item = s.substr(0, pos);
data[count++] = stod(item);
s.erase(0, pos + 1);
}
item = s.substr(0, pos);
data[6] = stod(item);
vTimeStamps.push_back(data[0]/1e9);
vAcc.push_back(cv::Point3f(data[4],data[5],data[6]));
vGyro.push_back(cv::Point3f(data[1],data[2],data[3]));
}
}
}