ORB-SLAM3/Thirdparty/Sophus/sophus/se2.hpp

836 lines
26 KiB
C++
Raw Normal View History

2023-11-28 16:42:26 +08:00
/// @file
/// Special Euclidean group SE(2) - rotation and translation in 2d.
#ifndef SOPHUS_SE2_HPP
#define SOPHUS_SE2_HPP
#include "so2.hpp"
namespace Sophus {
template <class Scalar_, int Options = 0>
class SE2;
using SE2d = SE2<double>;
using SE2f = SE2<float>;
} // namespace Sophus
namespace Eigen {
namespace internal {
template <class Scalar_, int Options>
struct traits<Sophus::SE2<Scalar_, Options>> {
using Scalar = Scalar_;
using TranslationType = Sophus::Vector2<Scalar, Options>;
using SO2Type = Sophus::SO2<Scalar, Options>;
};
template <class Scalar_, int Options>
struct traits<Map<Sophus::SE2<Scalar_>, Options>>
: traits<Sophus::SE2<Scalar_, Options>> {
using Scalar = Scalar_;
using TranslationType = Map<Sophus::Vector2<Scalar>, Options>;
using SO2Type = Map<Sophus::SO2<Scalar>, Options>;
};
template <class Scalar_, int Options>
struct traits<Map<Sophus::SE2<Scalar_> const, Options>>
: traits<Sophus::SE2<Scalar_, Options> const> {
using Scalar = Scalar_;
using TranslationType = Map<Sophus::Vector2<Scalar> const, Options>;
using SO2Type = Map<Sophus::SO2<Scalar> const, Options>;
};
} // namespace internal
} // namespace Eigen
namespace Sophus {
/// SE2 base type - implements SE2 class but is storage agnostic.
///
/// SE(2) is the group of rotations and translation in 2d. It is the
/// semi-direct product of SO(2) and the 2d Euclidean vector space. The class
/// is represented using a composition of SO2Group for rotation and a 2-vector
/// for translation.
///
/// SE(2) is neither compact, nor a commutative group.
///
/// See SO2Group for more details of the rotation representation in 2d.
///
template <class Derived>
class SE2Base {
public:
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
using TranslationType =
typename Eigen::internal::traits<Derived>::TranslationType;
using SO2Type = typename Eigen::internal::traits<Derived>::SO2Type;
/// Degrees of freedom of manifold, number of dimensions in tangent space
/// (two for translation, three for rotation).
static int constexpr DoF = 3;
/// Number of internal parameters used (tuple for complex, two for
/// translation).
static int constexpr num_parameters = 4;
/// Group transformations are 3x3 matrices.
static int constexpr N = 3;
using Transformation = Matrix<Scalar, N, N>;
using Point = Vector2<Scalar>;
using HomogeneousPoint = Vector3<Scalar>;
using Line = ParametrizedLine2<Scalar>;
using Tangent = Vector<Scalar, DoF>;
using Adjoint = Matrix<Scalar, DoF, DoF>;
/// For binary operations the return type is determined with the
/// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
/// types, as well as other compatible scalar types such as Ceres::Jet and
/// double scalars with SE2 operations.
template <typename OtherDerived>
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
Scalar, typename OtherDerived::Scalar>::ReturnType;
template <typename OtherDerived>
using SE2Product = SE2<ReturnScalar<OtherDerived>>;
template <typename PointDerived>
using PointProduct = Vector2<ReturnScalar<PointDerived>>;
template <typename HPointDerived>
using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
/// Adjoint transformation
///
/// This function return the adjoint transformation ``Ad`` of the group
/// element ``A`` such that for all ``x`` it holds that
/// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
///
SOPHUS_FUNC Adjoint Adj() const {
Matrix<Scalar, 2, 2> const& R = so2().matrix();
Transformation res;
res.setIdentity();
res.template topLeftCorner<2, 2>() = R;
res(0, 2) = translation()[1];
res(1, 2) = -translation()[0];
return res;
}
/// Returns copy of instance casted to NewScalarType.
///
template <class NewScalarType>
SOPHUS_FUNC SE2<NewScalarType> cast() const {
return SE2<NewScalarType>(so2().template cast<NewScalarType>(),
translation().template cast<NewScalarType>());
}
/// Returns derivative of this * exp(x) wrt x at x=0.
///
SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
const {
Matrix<Scalar, num_parameters, DoF> J;
Sophus::Vector2<Scalar> const c = unit_complex();
Scalar o(0);
J(0, 0) = o;
J(0, 1) = o;
J(0, 2) = -c[1];
J(1, 0) = o;
J(1, 1) = o;
J(1, 2) = c[0];
J(2, 0) = c[0];
J(2, 1) = -c[1];
J(2, 2) = o;
J(3, 0) = c[1];
J(3, 1) = c[0];
J(3, 2) = o;
return J;
}
/// Returns group inverse.
///
SOPHUS_FUNC SE2<Scalar> inverse() const {
SO2<Scalar> const invR = so2().inverse();
return SE2<Scalar>(invR, invR * (translation() * Scalar(-1)));
}
/// Logarithmic map
///
/// Computes the logarithm, the inverse of the group exponential which maps
/// element of the group (rigid body transformations) to elements of the
/// tangent space (twist).
///
/// To be specific, this function computes ``vee(logmat(.))`` with
/// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
/// of SE(2).
///
SOPHUS_FUNC Tangent log() const {
using std::abs;
Tangent upsilon_theta;
Scalar theta = so2().log();
upsilon_theta[2] = theta;
Scalar halftheta = Scalar(0.5) * theta;
Scalar halftheta_by_tan_of_halftheta;
Vector2<Scalar> z = so2().unit_complex();
Scalar real_minus_one = z.x() - Scalar(1.);
if (abs(real_minus_one) < Constants<Scalar>::epsilon()) {
halftheta_by_tan_of_halftheta =
Scalar(1.) - Scalar(1. / 12) * theta * theta;
} else {
halftheta_by_tan_of_halftheta = -(halftheta * z.y()) / (real_minus_one);
}
Matrix<Scalar, 2, 2> V_inv;
V_inv << halftheta_by_tan_of_halftheta, halftheta, -halftheta,
halftheta_by_tan_of_halftheta;
upsilon_theta.template head<2>() = V_inv * translation();
return upsilon_theta;
}
/// Normalize SO2 element
///
/// It re-normalizes the SO2 element.
///
SOPHUS_FUNC void normalize() { so2().normalize(); }
/// Returns 3x3 matrix representation of the instance.
///
/// It has the following form:
///
/// | R t |
/// | o 1 |
///
/// where ``R`` is a 2x2 rotation matrix, ``t`` a translation 2-vector and
/// ``o`` a 2-column vector of zeros.
///
SOPHUS_FUNC Transformation matrix() const {
Transformation homogenious_matrix;
homogenious_matrix.template topLeftCorner<2, 3>() = matrix2x3();
homogenious_matrix.row(2) =
Matrix<Scalar, 1, 3>(Scalar(0), Scalar(0), Scalar(1));
return homogenious_matrix;
}
/// Returns the significant first two rows of the matrix above.
///
SOPHUS_FUNC Matrix<Scalar, 2, 3> matrix2x3() const {
Matrix<Scalar, 2, 3> matrix;
matrix.template topLeftCorner<2, 2>() = rotationMatrix();
matrix.col(2) = translation();
return matrix;
}
/// Assignment-like operator from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC SE2Base<Derived>& operator=(SE2Base<OtherDerived> const& other) {
so2() = other.so2();
translation() = other.translation();
return *this;
}
/// Group multiplication, which is rotation concatenation.
///
template <typename OtherDerived>
SOPHUS_FUNC SE2Product<OtherDerived> operator*(
SE2Base<OtherDerived> const& other) const {
return SE2Product<OtherDerived>(
so2() * other.so2(), translation() + so2() * other.translation());
}
/// Group action on 2-points.
///
/// This function rotates and translates a two dimensional point ``p`` by the
/// SE(2) element ``bar_T_foo = (bar_R_foo, t_bar)`` (= rigid body
/// transformation):
///
/// ``p_bar = bar_R_foo * p_foo + t_bar``.
///
template <typename PointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<PointDerived, 2>::value>::type>
SOPHUS_FUNC PointProduct<PointDerived> operator*(
Eigen::MatrixBase<PointDerived> const& p) const {
return so2() * p + translation();
}
/// Group action on homogeneous 2-points. See above for more details.
///
template <typename HPointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<HPointDerived, 3>::value>::type>
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
Eigen::MatrixBase<HPointDerived> const& p) const {
const PointProduct<HPointDerived> tp =
so2() * p.template head<2>() + p(2) * translation();
return HomogeneousPointProduct<HPointDerived>(tp(0), tp(1), p(2));
}
/// Group action on lines.
///
/// This function rotates and translates a parametrized line
/// ``l(t) = o + t * d`` by the SE(2) element:
///
/// Origin ``o`` is rotated and translated using SE(2) action
/// Direction ``d`` is rotated using SO(2) action
///
SOPHUS_FUNC Line operator*(Line const& l) const {
return Line((*this) * l.origin(), so2() * l.direction());
}
/// In-place group multiplication. This method is only valid if the return
/// type of the multiplication is compatible with this SO2's Scalar type.
///
template <typename OtherDerived,
typename = typename std::enable_if<
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
SOPHUS_FUNC SE2Base<Derived>& operator*=(SE2Base<OtherDerived> const& other) {
*static_cast<Derived*>(this) = *this * other;
return *this;
}
/// Returns internal parameters of SE(2).
///
/// It returns (c[0], c[1], t[0], t[1]),
/// with c being the unit complex number, t the translation 3-vector.
///
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
Sophus::Vector<Scalar, num_parameters> p;
p << so2().params(), translation();
return p;
}
/// Returns rotation matrix.
///
SOPHUS_FUNC Matrix<Scalar, 2, 2> rotationMatrix() const {
return so2().matrix();
}
/// Takes in complex number, and normalizes it.
///
/// Precondition: The complex number must not be close to zero.
///
SOPHUS_FUNC void setComplex(Sophus::Vector2<Scalar> const& complex) {
return so2().setComplex(complex);
}
/// Sets ``so3`` using ``rotation_matrix``.
///
/// Precondition: ``R`` must be orthogonal and ``det(R)=1``.
///
SOPHUS_FUNC void setRotationMatrix(Matrix<Scalar, 2, 2> const& R) {
SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %", R);
SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %",
R.determinant());
typename SO2Type::ComplexTemporaryType const complex(
Scalar(0.5) * (R(0, 0) + R(1, 1)), Scalar(0.5) * (R(1, 0) - R(0, 1)));
so2().setComplex(complex);
}
/// Mutator of SO3 group.
///
SOPHUS_FUNC
SO2Type& so2() { return static_cast<Derived*>(this)->so2(); }
/// Accessor of SO3 group.
///
SOPHUS_FUNC
SO2Type const& so2() const {
return static_cast<Derived const*>(this)->so2();
}
/// Mutator of translation vector.
///
SOPHUS_FUNC
TranslationType& translation() {
return static_cast<Derived*>(this)->translation();
}
/// Accessor of translation vector
///
SOPHUS_FUNC
TranslationType const& translation() const {
return static_cast<Derived const*>(this)->translation();
}
/// Accessor of unit complex number.
///
SOPHUS_FUNC
typename Eigen::internal::traits<Derived>::SO2Type::ComplexT const&
unit_complex() const {
return so2().unit_complex();
}
};
/// SE2 using default storage; derived from SE2Base.
template <class Scalar_, int Options>
class SE2 : public SE2Base<SE2<Scalar_, Options>> {
public:
using Base = SE2Base<SE2<Scalar_, Options>>;
static int constexpr DoF = Base::DoF;
static int constexpr num_parameters = Base::num_parameters;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using SO2Member = SO2<Scalar, Options>;
using TranslationMember = Vector2<Scalar, Options>;
using Base::operator=;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// Default constructor initializes rigid body motion to the identity.
///
SOPHUS_FUNC SE2();
/// Copy constructor
///
SOPHUS_FUNC SE2(SE2 const& other) = default;
/// Copy-like constructor from OtherDerived
///
template <class OtherDerived>
SOPHUS_FUNC SE2(SE2Base<OtherDerived> const& other)
: so2_(other.so2()), translation_(other.translation()) {
static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
"must be same Scalar type");
}
/// Constructor from SO3 and translation vector
///
template <class OtherDerived, class D>
SOPHUS_FUNC SE2(SO2Base<OtherDerived> const& so2,
Eigen::MatrixBase<D> const& translation)
: so2_(so2), translation_(translation) {
static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
"must be same Scalar type");
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
"must be same Scalar type");
}
/// Constructor from rotation matrix and translation vector
///
/// Precondition: Rotation matrix needs to be orthogonal with determinant
/// of 1.
///
SOPHUS_FUNC
SE2(typename SO2<Scalar>::Transformation const& rotation_matrix,
Point const& translation)
: so2_(rotation_matrix), translation_(translation) {}
/// Constructor from rotation angle and translation vector.
///
SOPHUS_FUNC SE2(Scalar const& theta, Point const& translation)
: so2_(theta), translation_(translation) {}
/// Constructor from complex number and translation vector
///
/// Precondition: ``complex`` must not be close to zero.
SOPHUS_FUNC SE2(Vector2<Scalar> const& complex, Point const& translation)
: so2_(complex), translation_(translation) {}
/// Constructor from 3x3 matrix
///
/// Precondition: Rotation matrix needs to be orthogonal with determinant
/// of 1. The last row must be ``(0, 0, 1)``.
///
SOPHUS_FUNC explicit SE2(Transformation const& T)
: so2_(T.template topLeftCorner<2, 2>().eval()),
translation_(T.template block<2, 1>(0, 2)) {}
/// This provides unsafe read/write access to internal data. SO(2) is
/// represented by a complex number (two parameters). When using direct write
/// access, the user needs to take care of that the complex number stays
/// normalized.
///
SOPHUS_FUNC Scalar* data() {
// so2_ and translation_ are layed out sequentially with no padding
return so2_.data();
}
/// Const version of data() above.
///
SOPHUS_FUNC Scalar const* data() const {
/// so2_ and translation_ are layed out sequentially with no padding
return so2_.data();
}
/// Accessor of SO3
///
SOPHUS_FUNC SO2Member& so2() { return so2_; }
/// Mutator of SO3
///
SOPHUS_FUNC SO2Member const& so2() const { return so2_; }
/// Mutator of translation vector
///
SOPHUS_FUNC TranslationMember& translation() { return translation_; }
/// Accessor of translation vector
///
SOPHUS_FUNC TranslationMember const& translation() const {
return translation_;
}
/// Returns derivative of exp(x) wrt. x.
///
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
Tangent const& upsilon_theta) {
using std::abs;
using std::cos;
using std::pow;
using std::sin;
Sophus::Matrix<Scalar, num_parameters, DoF> J;
Sophus::Vector<Scalar, 2> upsilon = upsilon_theta.template head<2>();
Scalar theta = upsilon_theta[2];
if (abs(theta) < Constants<Scalar>::epsilon()) {
Scalar const o(0);
Scalar const i(1);
// clang-format off
J << o, o, o, o, o, i, i, o, -Scalar(0.5) * upsilon[1], o, i,
Scalar(0.5) * upsilon[0];
// clang-format on
return J;
}
Scalar const c0 = sin(theta);
Scalar const c1 = cos(theta);
Scalar const c2 = 1.0 / theta;
Scalar const c3 = c0 * c2;
Scalar const c4 = -c1 + Scalar(1);
Scalar const c5 = c2 * c4;
Scalar const c6 = c1 * c2;
Scalar const c7 = pow(theta, -2);
Scalar const c8 = c0 * c7;
Scalar const c9 = c4 * c7;
Scalar const o = Scalar(0);
J(0, 0) = o;
J(0, 1) = o;
J(0, 2) = -c0;
J(1, 0) = o;
J(1, 1) = o;
J(1, 2) = c1;
J(2, 0) = c3;
J(2, 1) = -c5;
J(2, 2) =
-c3 * upsilon[1] + c6 * upsilon[0] - c8 * upsilon[0] + c9 * upsilon[1];
J(3, 0) = c5;
J(3, 1) = c3;
J(3, 2) =
c3 * upsilon[0] + c6 * upsilon[1] - c8 * upsilon[1] - c9 * upsilon[0];
return J;
}
/// Returns derivative of exp(x) wrt. x_i at x=0.
///
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
Dx_exp_x_at_0() {
Sophus::Matrix<Scalar, num_parameters, DoF> J;
Scalar const o(0);
Scalar const i(1);
// clang-format off
J << o, o, o, o, o, i, i, o, o, o, i, o;
// clang-format on
return J;
}
/// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
///
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
return generator(i);
}
/// Group exponential
///
/// This functions takes in an element of tangent space (= twist ``a``) and
/// returns the corresponding element of the group SE(2).
///
/// The first two components of ``a`` represent the translational part
/// ``upsilon`` in the tangent space of SE(2), while the last three components
/// of ``a`` represents the rotation vector ``omega``.
/// To be more specific, this function computes ``expmat(hat(a))`` with
/// ``expmat(.)`` being the matrix exponential and ``hat(.)`` the hat-operator
/// of SE(2), see below.
///
SOPHUS_FUNC static SE2<Scalar> exp(Tangent const& a) {
Scalar theta = a[2];
SO2<Scalar> so2 = SO2<Scalar>::exp(theta);
Scalar sin_theta_by_theta;
Scalar one_minus_cos_theta_by_theta;
using std::abs;
if (abs(theta) < Constants<Scalar>::epsilon()) {
Scalar theta_sq = theta * theta;
sin_theta_by_theta = Scalar(1.) - Scalar(1. / 6.) * theta_sq;
one_minus_cos_theta_by_theta =
Scalar(0.5) * theta - Scalar(1. / 24.) * theta * theta_sq;
} else {
sin_theta_by_theta = so2.unit_complex().y() / theta;
one_minus_cos_theta_by_theta =
(Scalar(1.) - so2.unit_complex().x()) / theta;
}
Vector2<Scalar> trans(
sin_theta_by_theta * a[0] - one_minus_cos_theta_by_theta * a[1],
one_minus_cos_theta_by_theta * a[0] + sin_theta_by_theta * a[1]);
return SE2<Scalar>(so2, trans);
}
/// Returns closest SE3 given arbitrary 4x4 matrix.
///
template <class S = Scalar>
static SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, SE2>
fitToSE2(Matrix3<Scalar> const& T) {
return SE2(SO2<Scalar>::fitToSO2(T.template block<2, 2>(0, 0)),
T.template block<2, 1>(0, 2));
}
/// Returns the ith infinitesimal generators of SE(2).
///
/// The infinitesimal generators of SE(2) are:
///
/// ```
/// | 0 0 1 |
/// G_0 = | 0 0 0 |
/// | 0 0 0 |
///
/// | 0 0 0 |
/// G_1 = | 0 0 1 |
/// | 0 0 0 |
///
/// | 0 -1 0 |
/// G_2 = | 1 0 0 |
/// | 0 0 0 |
/// ```
///
/// Precondition: ``i`` must be in 0, 1 or 2.
///
SOPHUS_FUNC static Transformation generator(int i) {
SOPHUS_ENSURE(i >= 0 || i <= 2, "i should be in range [0,2].");
Tangent e;
e.setZero();
e[i] = Scalar(1);
return hat(e);
}
/// hat-operator
///
/// It takes in the 3-vector representation (= twist) and returns the
/// corresponding matrix representation of Lie algebra element.
///
/// Formally, the hat()-operator of SE(3) is defined as
///
/// ``hat(.): R^3 -> R^{3x33}, hat(a) = sum_i a_i * G_i`` (for i=0,1,2)
///
/// with ``G_i`` being the ith infinitesimal generator of SE(2).
///
/// The corresponding inverse is the vee()-operator, see below.
///
SOPHUS_FUNC static Transformation hat(Tangent const& a) {
Transformation Omega;
Omega.setZero();
Omega.template topLeftCorner<2, 2>() = SO2<Scalar>::hat(a[2]);
Omega.col(2).template head<2>() = a.template head<2>();
return Omega;
}
/// Lie bracket
///
/// It computes the Lie bracket of SE(2). To be more specific, it computes
///
/// ``[omega_1, omega_2]_se2 := vee([hat(omega_1), hat(omega_2)])``
///
/// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
/// hat()-operator and ``vee(.)`` the vee()-operator of SE(2).
///
SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
Vector2<Scalar> upsilon1 = a.template head<2>();
Vector2<Scalar> upsilon2 = b.template head<2>();
Scalar theta1 = a[2];
Scalar theta2 = b[2];
return Tangent(-theta1 * upsilon2[1] + theta2 * upsilon1[1],
theta1 * upsilon2[0] - theta2 * upsilon1[0], Scalar(0));
}
/// Construct pure rotation.
///
static SOPHUS_FUNC SE2 rot(Scalar const& x) {
return SE2(SO2<Scalar>(x), Sophus::Vector2<Scalar>::Zero());
}
/// Draw uniform sample from SE(2) manifold.
///
/// Translations are drawn component-wise from the range [-1, 1].
///
template <class UniformRandomBitGenerator>
static SE2 sampleUniform(UniformRandomBitGenerator& generator) {
std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
return SE2(SO2<Scalar>::sampleUniform(generator),
Vector2<Scalar>(uniform(generator), uniform(generator)));
}
/// Construct a translation only SE(2) instance.
///
template <class T0, class T1>
static SOPHUS_FUNC SE2 trans(T0 const& x, T1 const& y) {
return SE2(SO2<Scalar>(), Vector2<Scalar>(x, y));
}
static SOPHUS_FUNC SE2 trans(Vector2<Scalar> const& xy) {
return SE2(SO2<Scalar>(), xy);
}
/// Construct x-axis translation.
///
static SOPHUS_FUNC SE2 transX(Scalar const& x) {
return SE2::trans(x, Scalar(0));
}
/// Construct y-axis translation.
///
static SOPHUS_FUNC SE2 transY(Scalar const& y) {
return SE2::trans(Scalar(0), y);
}
/// vee-operator
///
/// It takes the 3x3-matrix representation ``Omega`` and maps it to the
/// corresponding 3-vector representation of Lie algebra.
///
/// This is the inverse of the hat()-operator, see above.
///
/// Precondition: ``Omega`` must have the following structure:
///
/// | 0 -d a |
/// | d 0 b |
/// | 0 0 0 |
///
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
SOPHUS_ENSURE(
Omega.row(2).template lpNorm<1>() < Constants<Scalar>::epsilon(),
"Omega: \n%", Omega);
Tangent upsilon_omega;
upsilon_omega.template head<2>() = Omega.col(2).template head<2>();
upsilon_omega[2] = SO2<Scalar>::vee(Omega.template topLeftCorner<2, 2>());
return upsilon_omega;
}
protected:
SO2Member so2_;
TranslationMember translation_;
};
template <class Scalar, int Options>
SE2<Scalar, Options>::SE2() : translation_(TranslationMember::Zero()) {
static_assert(std::is_standard_layout<SE2>::value,
"Assume standard layout for the use of offsetof check below.");
static_assert(
offsetof(SE2, so2_) + sizeof(Scalar) * SO2<Scalar>::num_parameters ==
offsetof(SE2, translation_),
"This class assumes packed storage and hence will only work "
"correctly depending on the compiler (options) - in "
"particular when using [this->data(), this-data() + "
"num_parameters] to access the raw data in a contiguous fashion.");
}
} // namespace Sophus
namespace Eigen {
/// Specialization of Eigen::Map for ``SE2``; derived from SE2Base.
///
/// Allows us to wrap SE2 objects around POD array.
template <class Scalar_, int Options>
class Map<Sophus::SE2<Scalar_>, Options>
: public Sophus::SE2Base<Map<Sophus::SE2<Scalar_>, Options>> {
public:
using Base = Sophus::SE2Base<Map<Sophus::SE2<Scalar_>, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator=;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC
Map(Scalar* coeffs)
: so2_(coeffs),
translation_(coeffs + Sophus::SO2<Scalar>::num_parameters) {}
/// Mutator of SO3
///
SOPHUS_FUNC Map<Sophus::SO2<Scalar>, Options>& so2() { return so2_; }
/// Accessor of SO3
///
SOPHUS_FUNC Map<Sophus::SO2<Scalar>, Options> const& so2() const {
return so2_;
}
/// Mutator of translation vector
///
SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options>& translation() {
return translation_;
}
/// Accessor of translation vector
///
SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options> const& translation() const {
return translation_;
}
protected:
Map<Sophus::SO2<Scalar>, Options> so2_;
Map<Sophus::Vector2<Scalar>, Options> translation_;
};
/// Specialization of Eigen::Map for ``SE2 const``; derived from SE2Base.
///
/// Allows us to wrap SE2 objects around POD array.
template <class Scalar_, int Options>
class Map<Sophus::SE2<Scalar_> const, Options>
: public Sophus::SE2Base<Map<Sophus::SE2<Scalar_> const, Options>> {
public:
using Base = Sophus::SE2Base<Map<Sophus::SE2<Scalar_> const, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC Map(Scalar const* coeffs)
: so2_(coeffs),
translation_(coeffs + Sophus::SO2<Scalar>::num_parameters) {}
/// Accessor of SO3
///
SOPHUS_FUNC Map<Sophus::SO2<Scalar> const, Options> const& so2() const {
return so2_;
}
/// Accessor of translation vector
///
SOPHUS_FUNC Map<Sophus::Vector2<Scalar> const, Options> const& translation()
const {
return translation_;
}
protected:
Map<Sophus::SO2<Scalar> const, Options> const so2_;
Map<Sophus::Vector2<Scalar> const, Options> const translation_;
};
} // namespace Eigen
#endif