ORB-SLAM3/Thirdparty/Sophus/test/core/test_rxso3.cpp

284 lines
11 KiB
C++
Raw Normal View History

2023-11-28 16:42:26 +08:00
#include <iostream>
#include <sophus/rxso3.hpp>
#include "tests.hpp"
// Explicit instantiate all class templates so that all member methods
// get compiled and for code coverage analysis.
namespace Eigen {
template class Map<Sophus::RxSO3<double>>;
template class Map<Sophus::RxSO3<double> const>;
} // namespace Eigen
namespace Sophus {
template class RxSO3<double, Eigen::AutoAlign>;
template class RxSO3<float, Eigen::DontAlign>;
#if SOPHUS_CERES
template class RxSO3<ceres::Jet<double, 3>>;
#endif
template <class Scalar_>
class Tests {
public:
using Scalar = Scalar_;
using SO3Type = SO3<Scalar>;
using RxSO3Type = RxSO3<Scalar>;
using RotationMatrixType = typename SO3<Scalar>::Transformation;
using Point = typename RxSO3<Scalar>::Point;
using Tangent = typename RxSO3<Scalar>::Tangent;
Scalar const kPi = Constants<Scalar>::pi();
Tests() {
rxso3_vec_.push_back(RxSO3Type::exp(
Tangent(Scalar(0.2), Scalar(0.5), Scalar(0.0), Scalar(1.))));
rxso3_vec_.push_back(RxSO3Type::exp(
Tangent(Scalar(0.2), Scalar(0.5), Scalar(-1.0), Scalar(1.1))));
rxso3_vec_.push_back(RxSO3Type::exp(
Tangent(Scalar(0.), Scalar(0.), Scalar(0.), Scalar(1.1))));
rxso3_vec_.push_back(RxSO3Type::exp(
Tangent(Scalar(0.), Scalar(0.), Scalar(0.00001), Scalar(0.))));
rxso3_vec_.push_back(RxSO3Type::exp(
Tangent(Scalar(0.), Scalar(0.), Scalar(0.00001), Scalar(0.00001))));
rxso3_vec_.push_back(RxSO3Type::exp(
Tangent(Scalar(0.), Scalar(0.), Scalar(0.00001), Scalar(0))));
rxso3_vec_.push_back(
RxSO3Type::exp(Tangent(kPi, Scalar(0), Scalar(0), Scalar(0.9))));
rxso3_vec_.push_back(
RxSO3Type::exp(
Tangent(Scalar(0.2), Scalar(-0.5), Scalar(0), Scalar(0))) *
RxSO3Type::exp(Tangent(kPi, Scalar(0), Scalar(0), Scalar(0))) *
RxSO3Type::exp(
Tangent(-Scalar(0.2), Scalar(-0.5), Scalar(0), Scalar(0))));
rxso3_vec_.push_back(
RxSO3Type::exp(
Tangent(Scalar(0.3), Scalar(0.5), Scalar(0.1), Scalar(0))) *
RxSO3Type::exp(Tangent(kPi, Scalar(0), Scalar(0), Scalar(0))) *
RxSO3Type::exp(
Tangent(Scalar(-0.3), Scalar(-0.5), Scalar(-0.1), Scalar(0))));
Tangent tmp;
tmp << Scalar(0), Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(1), Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(1), Scalar(0), Scalar(0), Scalar(0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(1), Scalar(0), Scalar(0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(0), Scalar(1), Scalar(-0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(-1), Scalar(1), Scalar(0), Scalar(-0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(20), Scalar(-1), Scalar(0), Scalar(2);
tangent_vec_.push_back(tmp);
point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4)));
point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5)));
}
void runAll() {
bool passed = testLieProperties();
passed &= testSaturation();
passed &= testRawDataAcces();
passed &= testConstructors();
passed &= testFit();
processTestResult(passed);
}
private:
bool testLieProperties() {
LieGroupTests<RxSO3Type> tests(rxso3_vec_, tangent_vec_, point_vec_);
return tests.doAllTestsPass();
}
bool testSaturation() {
bool passed = true;
RxSO3Type small1(Constants<Scalar>::epsilon(), SO3Type());
RxSO3Type small2(Constants<Scalar>::epsilon(),
SO3Type::exp(Vector3<Scalar>(Constants<Scalar>::pi(),
Scalar(0), Scalar(0))));
RxSO3Type saturated_product = small1 * small2;
SOPHUS_TEST_APPROX(passed, saturated_product.scale(),
Constants<Scalar>::epsilon(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, saturated_product.so3().matrix(),
(small1.so3() * small2.so3()).matrix(),
Constants<Scalar>::epsilon());
return passed;
}
bool testRawDataAcces() {
bool passed = true;
Eigen::Matrix<Scalar, 4, 1> raw = {Scalar(0), Scalar(1), Scalar(0),
Scalar(0)};
Eigen::Map<RxSO3Type const> map_of_const_rxso3(raw.data());
SOPHUS_TEST_APPROX(passed, map_of_const_rxso3.quaternion().coeffs().eval(),
raw, Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_const_rxso3.quaternion().coeffs().data(),
raw.data());
Eigen::Map<RxSO3Type const> const_shallow_copy = map_of_const_rxso3;
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.quaternion().coeffs().eval(),
map_of_const_rxso3.quaternion().coeffs().eval());
Eigen::Matrix<Scalar, 4, 1> raw2 = {Scalar(1), Scalar(0), Scalar(0),
Scalar(0)};
Eigen::Map<RxSO3Type> map_of_rxso3(raw.data());
Eigen::Quaternion<Scalar> quat;
quat.coeffs() = raw2;
map_of_rxso3.setQuaternion(quat);
SOPHUS_TEST_APPROX(passed, map_of_rxso3.quaternion().coeffs().eval(), raw2,
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_rxso3.quaternion().coeffs().data(),
raw.data());
SOPHUS_TEST_NEQ(passed, map_of_rxso3.quaternion().coeffs().data(),
quat.coeffs().data());
Eigen::Map<RxSO3Type> shallow_copy = map_of_rxso3;
SOPHUS_TEST_EQUAL(passed, shallow_copy.quaternion().coeffs().eval(),
map_of_rxso3.quaternion().coeffs().eval());
RxSO3Type const const_so3(quat);
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]);
}
RxSO3Type so3(quat);
for (int i = 0; i < 4; ++i) {
so3.data()[i] = raw[i];
}
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]);
}
// regression: test that rotationMatrix API doesn't change underlying value
// for non-const-map and compiles at all for const-map
Eigen::Matrix<Scalar, 4, 1> raw3 = {Scalar(2), Scalar(0), Scalar(0),
Scalar(0)};
Eigen::Map<RxSO3Type> map_of_rxso3_3(raw3.data());
Eigen::Map<const RxSO3Type> const_map_of_rxso3_3(raw3.data());
RxSO3Type rxso3_copy3 = map_of_rxso3_3;
const RotationMatrixType r_ref = map_of_rxso3_3.so3().matrix();
const RotationMatrixType r = map_of_rxso3_3.rotationMatrix();
SOPHUS_TEST_APPROX(passed, r_ref, r, Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, map_of_rxso3_3.quaternion().coeffs().eval(),
rxso3_copy3.quaternion().coeffs().eval(),
Constants<Scalar>::epsilon());
const RotationMatrixType r_const = const_map_of_rxso3_3.rotationMatrix();
SOPHUS_TEST_APPROX(passed, r_ref, r_const, Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(
passed, const_map_of_rxso3_3.quaternion().coeffs().eval(),
rxso3_copy3.quaternion().coeffs().eval(), Constants<Scalar>::epsilon());
Eigen::Matrix<Scalar, 4, 1> data1, data2;
data1 << Scalar(.1), Scalar(.2), Scalar(.3), Scalar(.4);
data2 << Scalar(.5), Scalar(.4), Scalar(.3), Scalar(.2);
Eigen::Map<RxSO3Type> map1(data1.data()), map2(data2.data());
// map -> map assignment
map2 = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
// map -> type assignment
RxSO3Type copy;
copy = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
// type -> map assignment
copy = RxSO3Type::exp(Tangent(Scalar(0.2), Scalar(0.5),
Scalar(-1.0), Scalar(1.1)));
map1 = copy;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
return passed;
}
bool testConstructors() {
bool passed = true;
RxSO3Type rxso3;
Scalar scale(1.2);
rxso3.setScale(scale);
SOPHUS_TEST_APPROX(passed, scale, rxso3.scale(),
Constants<Scalar>::epsilon(), "setScale");
auto so3 = rxso3_vec_[0].so3();
rxso3.setSO3(so3);
SOPHUS_TEST_APPROX(passed, scale, rxso3.scale(),
Constants<Scalar>::epsilon(), "setScale");
SOPHUS_TEST_APPROX(passed, RxSO3Type(scale, so3).matrix(), rxso3.matrix(),
Constants<Scalar>::epsilon(), "RxSO3(scale, SO3)");
SOPHUS_TEST_APPROX(passed, RxSO3Type(scale, so3.matrix()).matrix(),
rxso3.matrix(), Constants<Scalar>::epsilon(),
"RxSO3(scale, SO3)");
Matrix3<Scalar> R =
SO3<Scalar>::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(-1.0)))
.matrix();
Matrix3<Scalar> sR = R * Scalar(1.3);
SOPHUS_TEST_APPROX(passed, RxSO3Type(sR).matrix(), sR,
Constants<Scalar>::epsilon(), "RxSO3(sR)");
rxso3.setScaledRotationMatrix(sR);
SOPHUS_TEST_APPROX(passed, sR, rxso3.matrix(), Constants<Scalar>::epsilon(),
"setScaleRotationMatrix");
rxso3.setScale(scale);
rxso3.setRotationMatrix(R);
SOPHUS_TEST_APPROX(passed, R, rxso3.rotationMatrix(),
Constants<Scalar>::epsilon(), "setRotationMatrix");
SOPHUS_TEST_APPROX(passed, scale, rxso3.scale(),
Constants<Scalar>::epsilon(), "setScale");
return passed;
}
template <class S = Scalar>
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
bool passed = true;
for (int i = 0; i < 10; ++i) {
Matrix3<Scalar> M = Matrix3<Scalar>::Random();
for (Scalar scale : {Scalar(0.01), Scalar(0.99), Scalar(1), Scalar(10)}) {
Matrix3<Scalar> R = makeRotationMatrix(M);
Matrix3<Scalar> sR = scale * R;
SOPHUS_TEST(passed, isScaledOrthogonalAndPositive(sR),
"isScaledOrthogonalAndPositive(sR): % *\n%", scale, R);
Matrix3<Scalar> sR_cols_swapped;
sR_cols_swapped << sR.col(1), sR.col(0), sR.col(2);
SOPHUS_TEST(passed, !isScaledOrthogonalAndPositive(sR_cols_swapped),
"isScaledOrthogonalAndPositive(-sR): % *\n%", scale, R);
}
}
return passed;
}
template <class S = Scalar>
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
return true;
}
std::vector<RxSO3Type, Eigen::aligned_allocator<RxSO3Type>> rxso3_vec_;
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
};
int test_rxso3() {
using std::cerr;
using std::endl;
cerr << "Test RxSO3" << endl << endl;
cerr << "Double tests: " << endl;
Tests<double>().runAll();
cerr << "Float tests: " << endl;
Tests<float>().runAll();
#if SOPHUS_CERES
cerr << "ceres::Jet<double, 3> tests: " << endl;
Tests<ceres::Jet<double, 3>>().runAll();
#endif
return 0;
}
} // namespace Sophus
int main() { return Sophus::test_rxso3(); }