ORB-SLAM3/Thirdparty/Sophus/test/core/test_se2.cpp

261 lines
9.3 KiB
C++
Raw Normal View History

2023-11-28 16:42:26 +08:00
#include <iostream>
#include <sophus/se2.hpp>
#include <unsupported/Eigen/MatrixFunctions>
#include "tests.hpp"
// Explicit instantiate all class templates so that all member methods
// get compiled and for code coverage analysis.
namespace Eigen {
template class Map<Sophus::SE2<double>>;
template class Map<Sophus::SE2<double> const>;
} // namespace Eigen
namespace Sophus {
template class SE2<double, Eigen::AutoAlign>;
template class SE2<double, Eigen::DontAlign>;
#if SOPHUS_CERES
template class SE2<ceres::Jet<double, 3>>;
#endif
template <class Scalar>
class Tests {
public:
using SE2Type = SE2<Scalar>;
using SO2Type = SO2<Scalar>;
using Point = typename SE2<Scalar>::Point;
using Tangent = typename SE2<Scalar>::Tangent;
Scalar const kPi = Constants<Scalar>::pi();
Tests() {
se2_vec_.push_back(
SE2Type(SO2Type(Scalar(0.0)), Point(Scalar(0), Scalar(0))));
se2_vec_.push_back(
SE2Type(SO2Type(Scalar(0.2)), Point(Scalar(10), Scalar(0))));
se2_vec_.push_back(
SE2Type(SO2Type(Scalar(0.)), Point(Scalar(0), Scalar(100))));
se2_vec_.push_back(
SE2Type(SO2Type(Scalar(-1.)), Point(Scalar(20), -Scalar(1))));
se2_vec_.push_back(
SE2Type(SO2Type(Scalar(0.00001)),
Point(Scalar(-0.00000001), Scalar(0.0000000001))));
se2_vec_.push_back(
SE2Type(SO2Type(Scalar(0.2)), Point(Scalar(0), Scalar(0))) *
SE2Type(SO2Type(kPi), Point(Scalar(0), Scalar(0))) *
SE2Type(SO2Type(Scalar(-0.2)), Point(Scalar(0), Scalar(0))));
se2_vec_.push_back(
SE2Type(SO2Type(Scalar(0.3)), Point(Scalar(2), Scalar(0))) *
SE2Type(SO2Type(kPi), Point(Scalar(0), Scalar(0))) *
SE2Type(SO2Type(Scalar(-0.3)), Point(Scalar(0), Scalar(6))));
Tangent tmp;
tmp << Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(1), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(1), Scalar(1);
tangent_vec_.push_back(tmp);
tmp << Scalar(-1), Scalar(1), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(20), Scalar(-1), Scalar(-1);
tangent_vec_.push_back(tmp);
tmp << Scalar(30), Scalar(5), Scalar(20);
tangent_vec_.push_back(tmp);
point_vec_.push_back(Point(1, 2));
point_vec_.push_back(Point(1, -3));
}
void runAll() {
bool passed = testLieProperties();
passed &= testRawDataAcces();
passed &= testMutatingAccessors();
passed &= testConstructors();
passed &= testFit();
processTestResult(passed);
}
private:
bool testLieProperties() {
LieGroupTests<SE2Type> tests(se2_vec_, tangent_vec_, point_vec_);
return tests.doAllTestsPass();
}
bool testRawDataAcces() {
bool passed = true;
Eigen::Matrix<Scalar, 4, 1> raw;
raw << Scalar(0), Scalar(1), Scalar(0), Scalar(3);
Eigen::Map<SE2Type const> const_se2_map(raw.data());
SOPHUS_TEST_APPROX(passed, const_se2_map.unit_complex().eval(),
raw.template head<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, const_se2_map.translation().eval(),
raw.template tail<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, const_se2_map.unit_complex().data(), raw.data());
SOPHUS_TEST_EQUAL(passed, const_se2_map.translation().data(),
raw.data() + 2);
Eigen::Map<SE2Type const> const_shallow_copy = const_se2_map;
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.unit_complex().eval(),
const_se2_map.unit_complex().eval());
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.translation().eval(),
const_se2_map.translation().eval());
Eigen::Matrix<Scalar, 4, 1> raw2;
raw2 << Scalar(1), Scalar(0), Scalar(3), Scalar(1);
Eigen::Map<SE2Type> map_of_se3(raw.data());
map_of_se3.setComplex(raw2.template head<2>());
map_of_se3.translation() = raw2.template tail<2>();
SOPHUS_TEST_APPROX(passed, map_of_se3.unit_complex().eval(),
raw2.template head<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, map_of_se3.translation().eval(),
raw2.template tail<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_se3.unit_complex().data(), raw.data());
SOPHUS_TEST_EQUAL(passed, map_of_se3.translation().data(), raw.data() + 2);
SOPHUS_TEST_NEQ(passed, map_of_se3.unit_complex().data(), raw2.data());
Eigen::Map<SE2Type> shallow_copy = map_of_se3;
SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_complex().eval(),
map_of_se3.unit_complex().eval());
SOPHUS_TEST_EQUAL(passed, shallow_copy.translation().eval(),
map_of_se3.translation().eval());
Eigen::Map<SE2Type> const const_map_of_se2 = map_of_se3;
SOPHUS_TEST_EQUAL(passed, const_map_of_se2.unit_complex().eval(),
map_of_se3.unit_complex().eval());
SOPHUS_TEST_EQUAL(passed, const_map_of_se2.translation().eval(),
map_of_se3.translation().eval());
SE2Type const const_se2(raw2.template head<2>().eval(),
raw2.template tail<2>().eval());
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, const_se2.data()[i], raw2.data()[i]);
}
SE2Type se2(raw2.template head<2>().eval(), raw2.template tail<2>().eval());
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, se2.data()[i], raw2.data()[i]);
}
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, se2.data()[i], raw.data()[i]);
}
SE2Type trans = SE2Type::transX(Scalar(0.2));
SOPHUS_TEST_APPROX(passed, trans.translation().x(), Scalar(0.2),
Constants<Scalar>::epsilon());
trans = SE2Type::transY(Scalar(0.7));
SOPHUS_TEST_APPROX(passed, trans.translation().y(), Scalar(0.7),
Constants<Scalar>::epsilon());
Eigen::Matrix<Scalar, 4, 1> data1, data2;
data1 << Scalar(0), Scalar(1), Scalar(1), Scalar(2);
data1 << Scalar(1), Scalar(0), Scalar(2), Scalar(1);
Eigen::Map<SE2Type> map1(data1.data()), map2(data2.data());
// map -> map assignment
map2 = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
// map -> type assignment
SE2Type copy;
copy = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
// type -> map assignment
copy = SE2Type::trans(Scalar(4), Scalar(5)) * SE2Type::rot(Scalar(0.5));
map1 = copy;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
return passed;
}
bool testMutatingAccessors() {
bool passed = true;
SE2Type se2;
SO2Type R(Scalar(0.2));
se2.setRotationMatrix(R.matrix());
SOPHUS_TEST_APPROX(passed, se2.rotationMatrix(), R.matrix(),
Constants<Scalar>::epsilon());
Eigen::Matrix<Scalar, 4, 1> raw;
raw << Scalar(1), Scalar(0), Scalar(3), Scalar(1);
Eigen::Map<SE2Type> map_of_se2(raw.data());
map_of_se2.setRotationMatrix(R.matrix());
SOPHUS_TEST_APPROX(passed, map_of_se2.rotationMatrix(), R.matrix(),
Constants<Scalar>::epsilon());
return passed;
}
bool testConstructors() {
bool passed = true;
Matrix3<Scalar> I = Matrix3<Scalar>::Identity();
SOPHUS_TEST_EQUAL(passed, SE2Type().matrix(), I);
SE2Type se2 = se2_vec_.front();
Point translation = se2.translation();
SO2Type so2 = se2.so2();
SOPHUS_TEST_APPROX(passed, SE2Type(so2.log(), translation).matrix(),
se2.matrix(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SE2Type(so2, translation).matrix(), se2.matrix(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SE2Type(so2.matrix(), translation).matrix(),
se2.matrix(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed,
SE2Type(so2.unit_complex(), translation).matrix(),
se2.matrix(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SE2Type(se2.matrix()).matrix(), se2.matrix(),
Constants<Scalar>::epsilon());
return passed;
}
template <class S = Scalar>
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
bool passed = true;
for (int i = 0; i < 100; ++i) {
Matrix3<Scalar> T = Matrix3<Scalar>::Random();
SE2Type se2 = SE2Type::fitToSE2(T);
SE2Type se2_2 = SE2Type::fitToSE2(se2.matrix());
SOPHUS_TEST_APPROX(passed, se2.matrix(), se2_2.matrix(),
Constants<Scalar>::epsilon());
}
return passed;
}
template <class S = Scalar>
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
return true;
}
std::vector<SE2Type, Eigen::aligned_allocator<SE2Type>> se2_vec_;
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
};
int test_se2() {
using std::cerr;
using std::endl;
cerr << "Test SE2" << endl << endl;
cerr << "Double tests: " << endl;
Tests<double>().runAll();
cerr << "Float tests: " << endl;
Tests<float>().runAll();
#if SOPHUS_CERES
cerr << "ceres::Jet<double, 3> tests: " << endl;
Tests<ceres::Jet<double, 3>>().runAll();
#endif
return 0;
}
} // namespace Sophus
int main() { return Sophus::test_se2(); }