/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include "opencv2/imgproc/imgproc.hpp" #include #include "librealsense2/rsutil.h" using namespace std; bool b_continue_session; const float reductionFactor = 0.5; const int colsRedIm = reductionFactor * 848; const int rowsRedIm = reductionFactor * 800; void exit_loop_handler(int s){ cout << "Finishing session" << endl; b_continue_session = false; } static rs2_option get_sensor_option(const rs2::sensor& sensor) { // Sensors usually have several options to control their properties // such as Exposure, Brightness etc. std::cout << "Sensor supports the following options:\n" << std::endl; // The following loop shows how to iterate over all available options // Starting from 0 until RS2_OPTION_COUNT (exclusive) for (int i = 0; i < static_cast(RS2_OPTION_COUNT); i++) { rs2_option option_type = static_cast(i); //SDK enum types can be streamed to get a string that represents them std::cout << " " << i << ": " << option_type; // To control an option, use the following api: // First, verify that the sensor actually supports this option if (sensor.supports(option_type)) { std::cout << std::endl; // Get a human readable description of the option const char* description = sensor.get_option_description(option_type); std::cout << " Description : " << description << std::endl; // Get the current value of the option float current_value = sensor.get_option(option_type); std::cout << " Current Value : " << current_value << std::endl; //To change the value of an option, please follow the change_sensor_option() function } else { std::cout << " is not supported" << std::endl; } } uint32_t selected_sensor_option = 0; return static_cast(selected_sensor_option); } int main(int argc, char **argv) { if (argc != 2) { cerr << endl << "Usage: ./recorder_realsense_D435i path_to_saving_folder" << endl; return 1; } string directory = string(argv[argc - 1]); struct sigaction sigIntHandler; sigIntHandler.sa_handler = exit_loop_handler; sigemptyset(&sigIntHandler.sa_mask); sigIntHandler.sa_flags = 0; sigaction(SIGINT, &sigIntHandler, NULL); b_continue_session = true; double offset = 0; // ms // Declare RealSense pipeline, encapsulating the actual device and sensors rs2::pipeline pipe; // Create a configuration for configuring the pipeline with a non default profile rs2::config cfg; cfg.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8,30); cfg.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8,30); cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F); //, 250); // 63 cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F); //, 400); // IMU callback std::mutex imu_mutex; std::condition_variable cond_image_rec; vector v_gyro_timestamp; vector v_gyro_data; vector v_acc_timestamp; vector v_acc_data; cv::Mat imCV_left, imCV_right; int width_img, height_img; double timestamp_image; bool image_ready = false; auto imu_callback = [&](const rs2::frame& frame) { std::unique_lock lock(imu_mutex); if(rs2::frameset fs = frame.as()) { rs2::video_frame color_frame_left = fs.get_fisheye_frame(1); rs2::video_frame color_frame_right = fs.get_fisheye_frame(2); imCV_left = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame_left.get_data()), cv::Mat::AUTO_STEP); imCV_right = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame_right.get_data()), cv::Mat::AUTO_STEP); timestamp_image = fs.get_timestamp()*1e-3; image_ready = true; lock.unlock(); cond_image_rec.notify_all(); } else if (rs2::motion_frame m_frame = frame.as()) { if (m_frame.get_profile().stream_name() == "Gyro") { // It runs at 200Hz v_gyro_data.push_back(m_frame.get_motion_data()); v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3); } else if (m_frame.get_profile().stream_name() == "Accel") { // It runs at 60Hz v_acc_data.push_back(m_frame.get_motion_data()); v_acc_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3); } } }; rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback); rs2::stream_profile cam_stream_left = pipe_profile.get_stream(RS2_STREAM_FISHEYE, 1); rs2::stream_profile cam_stream_right = pipe_profile.get_stream(RS2_STREAM_FISHEYE, 2); rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO); rs2_intrinsics intrinsics_cam = cam_stream_left.as().get_intrinsics(); width_img = intrinsics_cam.width; height_img = intrinsics_cam.height; cv::Mat imLeft, imRight; ofstream accFile, gyroFile, cam0TsFile, cam1TsFile; accFile.open (directory + "/IMU/acc.txt"); gyroFile.open (directory + "/IMU/gyro.txt"); cam0TsFile.open (directory + "/cam0/times.txt"); cam1TsFile.open (directory + "/cam1/times.txt"); cout << directory + "/IMU/acc.txt" << endl; if(!accFile.is_open() || ! gyroFile.is_open() || !cam0TsFile.is_open()){ cerr << "FILES NOT OPENED" << endl; exit(-1); } // Clear IMU vectors v_gyro_data.clear(); v_gyro_timestamp.clear(); v_acc_data.clear(); v_acc_timestamp.clear(); cv::namedWindow("cam0",cv::WINDOW_AUTOSIZE); while (b_continue_session){ std::vector vGyro; std::vector vGyro_times; std::vector vAccel, vAccel_Sync; std::vector vAccel_times; double imTs; { { std::unique_lock lk(imu_mutex); if (!image_ready) // wait until image read from the other thread cond_image_rec.wait(lk); } std::lock_guard lk(imu_mutex); // Copy the IMU data to local single thread variables vGyro = v_gyro_data; vGyro_times = v_gyro_timestamp; vAccel = v_acc_data; vAccel_times = v_acc_timestamp; imTs = timestamp_image; if(reductionFactor == 1.0) { imLeft = imCV_left.clone(); imRight = imCV_right.clone(); } else { cv::resize(imCV_left, imLeft, cv::Size(colsRedIm,rowsRedIm)); cv::resize(imCV_right, imRight, cv::Size(colsRedIm,rowsRedIm)); } // Clear IMU vectors v_gyro_data.clear(); v_gyro_timestamp.clear(); v_acc_data.clear(); v_acc_timestamp.clear(); image_ready = false; } cv::imshow("cam0",imLeft); cv::imshow("cam1",imRight); // save image and IMU data long int imTsInt = (long int) (1e9*imTs); string imgRepoLeft = directory + "/cam0/" + to_string(imTsInt) + ".png"; if(!imLeft.empty()) { cv::imwrite(imgRepoLeft, imLeft); cam0TsFile << imTsInt << endl; } else { cout << " left image empty!! \n"; } string imgRepoRight = directory + "/cam1/" + to_string(imTsInt) + ".png"; if(!imRight.empty()) { cv::imwrite(imgRepoRight, imRight); cam1TsFile << imTsInt << endl; } else { cout << "right image empty!! \n"; } //assert(vAccel.size() == vAccel_times.size()); //assert(vGyro.size() == vGyro_times.size()); for(int i=0; i