/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include "librealsense2/rsutil.h" #include using namespace std; bool b_continue_session; void exit_loop_handler(int s){ cout << "Finishing session" << endl; b_continue_session = false; } void interpolateData(const std::vector &vBase_times, std::vector &vInterp_data, std::vector &vInterp_times, const rs2_vector &prev_data, const double &prev_time); rs2_vector interpolateMeasure(const double target_time, const rs2_vector current_data, const double current_time, const rs2_vector prev_data, const double prev_time); static rs2_option get_sensor_option(const rs2::sensor& sensor) { // Sensors usually have several options to control their properties // such as Exposure, Brightness etc. std::cout << "Sensor supports the following options:\n" << std::endl; // The following loop shows how to iterate over all available options // Starting from 0 until RS2_OPTION_COUNT (exclusive) for (int i = 0; i < static_cast(RS2_OPTION_COUNT); i++) { rs2_option option_type = static_cast(i); //SDK enum types can be streamed to get a string that represents them std::cout << " " << i << ": " << option_type; // To control an option, use the following api: // First, verify that the sensor actually supports this option if (sensor.supports(option_type)) { std::cout << std::endl; // Get a human readable description of the option const char* description = sensor.get_option_description(option_type); std::cout << " Description : " << description << std::endl; // Get the current value of the option float current_value = sensor.get_option(option_type); std::cout << " Current Value : " << current_value << std::endl; //To change the value of an option, please follow the change_sensor_option() function } else { std::cout << " is not supported" << std::endl; } } uint32_t selected_sensor_option = 0; return static_cast(selected_sensor_option); } int main(int argc, char **argv) { if (argc < 3 || argc > 4) { cerr << endl << "Usage: ./stereo_inertial_realsense_D435i path_to_vocabulary path_to_settings (trajectory_file_name)" << endl; return 1; } string file_name; if (argc == 4) { file_name = string(argv[argc - 1]); } struct sigaction sigIntHandler; sigIntHandler.sa_handler = exit_loop_handler; sigemptyset(&sigIntHandler.sa_mask); sigIntHandler.sa_flags = 0; sigaction(SIGINT, &sigIntHandler, NULL); b_continue_session = true; double offset = 0; // ms rs2::context ctx; rs2::device_list devices = ctx.query_devices(); rs2::device selected_device; if (devices.size() == 0) { std::cerr << "No device connected, please connect a RealSense device" << std::endl; return 0; } else selected_device = devices[0]; std::vector sensors = selected_device.query_sensors(); int index = 0; // We can now iterate the sensors and print their names for (rs2::sensor sensor : sensors) if (sensor.supports(RS2_CAMERA_INFO_NAME)) { ++index; if (index == 1) { sensor.set_option(RS2_OPTION_ENABLE_AUTO_EXPOSURE, 1); sensor.set_option(RS2_OPTION_AUTO_EXPOSURE_LIMIT,5000); sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 0); // switch off emitter } // std::cout << " " << index << " : " << sensor.get_info(RS2_CAMERA_INFO_NAME) << std::endl; get_sensor_option(sensor); if (index == 2){ // RGB camera (not used here...) sensor.set_option(RS2_OPTION_EXPOSURE,100.f); } if (index == 3){ sensor.set_option(RS2_OPTION_ENABLE_MOTION_CORRECTION,0); } } // Declare RealSense pipeline, encapsulating the actual device and sensors rs2::pipeline pipe; // Create a configuration for configuring the pipeline with a non default profile rs2::config cfg; cfg.enable_stream(RS2_STREAM_INFRARED, 1, 640, 480, RS2_FORMAT_Y8, 30); cfg.enable_stream(RS2_STREAM_INFRARED, 2, 640, 480, RS2_FORMAT_Y8, 30); cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F); cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F); // IMU callback std::mutex imu_mutex; std::condition_variable cond_image_rec; vector v_accel_timestamp; vector v_accel_data; vector v_gyro_timestamp; vector v_gyro_data; double prev_accel_timestamp = 0; rs2_vector prev_accel_data; double current_accel_timestamp = 0; rs2_vector current_accel_data; vector v_accel_timestamp_sync; vector v_accel_data_sync; cv::Mat imCV, imRightCV; int width_img, height_img; double timestamp_image = -1.0; bool image_ready = false; int count_im_buffer = 0; // count dropped frames auto imu_callback = [&](const rs2::frame& frame) { std::unique_lock lock(imu_mutex); if(rs2::frameset fs = frame.as()) { count_im_buffer++; double new_timestamp_image = fs.get_timestamp()*1e-3; if(abs(timestamp_image-new_timestamp_image)<0.001){ // cout << "Two frames with the same timeStamp!!!\n"; count_im_buffer--; return; } rs2::video_frame ir_frameL = fs.get_infrared_frame(1); rs2::video_frame ir_frameR = fs.get_infrared_frame(2); imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(ir_frameL.get_data()), cv::Mat::AUTO_STEP); imRightCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(ir_frameR.get_data()), cv::Mat::AUTO_STEP); timestamp_image = fs.get_timestamp()*1e-3; image_ready = true; while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()) { int index = v_accel_timestamp_sync.size(); double target_time = v_gyro_timestamp[index]; v_accel_data_sync.push_back(current_accel_data); v_accel_timestamp_sync.push_back(target_time); } lock.unlock(); cond_image_rec.notify_all(); } else if (rs2::motion_frame m_frame = frame.as()) { if (m_frame.get_profile().stream_name() == "Gyro") { // It runs at 200Hz v_gyro_data.push_back(m_frame.get_motion_data()); v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3); //rs2_vector gyro_sample = m_frame.get_motion_data(); //std::cout << "Gyro:" << gyro_sample.x << ", " << gyro_sample.y << ", " << gyro_sample.z << std::endl; } else if (m_frame.get_profile().stream_name() == "Accel") { // It runs at 60Hz prev_accel_timestamp = current_accel_timestamp; prev_accel_data = current_accel_data; current_accel_data = m_frame.get_motion_data(); current_accel_timestamp = (m_frame.get_timestamp()+offset)*1e-3; while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()) { int index = v_accel_timestamp_sync.size(); double target_time = v_gyro_timestamp[index]; rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp); v_accel_data_sync.push_back(interp_data); v_accel_timestamp_sync.push_back(target_time); } // std::cout << "Accel:" << current_accel_data.x << ", " << current_accel_data.y << ", " << current_accel_data.z << std::endl; } } }; rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback); vector vImuMeas; rs2::stream_profile cam_left = pipe_profile.get_stream(RS2_STREAM_INFRARED, 1); rs2::stream_profile cam_right = pipe_profile.get_stream(RS2_STREAM_INFRARED, 2); rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO); float* Rbc = cam_left.get_extrinsics_to(imu_stream).rotation; float* tbc = cam_left.get_extrinsics_to(imu_stream).translation; std::cout << "Tbc (left) = " << std::endl; for(int i = 0; i<3; i++){ for(int j = 0; j<3; j++) std::cout << Rbc[i*3 + j] << ", "; std::cout << tbc[i] << "\n"; } float* Rlr = cam_right.get_extrinsics_to(cam_left).rotation; float* tlr = cam_right.get_extrinsics_to(cam_left).translation; std::cout << "Tlr = " << std::endl; for(int i = 0; i<3; i++){ for(int j = 0; j<3; j++) std::cout << Rlr[i*3 + j] << ", "; std::cout << tlr[i] << "\n"; } rs2_intrinsics intrinsics_left = cam_left.as().get_intrinsics(); width_img = intrinsics_left.width; height_img = intrinsics_left.height; cout << "Left camera: \n"; std::cout << " fx = " << intrinsics_left.fx << std::endl; std::cout << " fy = " << intrinsics_left.fy << std::endl; std::cout << " cx = " << intrinsics_left.ppx << std::endl; std::cout << " cy = " << intrinsics_left.ppy << std::endl; std::cout << " height = " << intrinsics_left.height << std::endl; std::cout << " width = " << intrinsics_left.width << std::endl; std::cout << " Coeff = " << intrinsics_left.coeffs[0] << ", " << intrinsics_left.coeffs[1] << ", " << intrinsics_left.coeffs[2] << ", " << intrinsics_left.coeffs[3] << ", " << intrinsics_left.coeffs[4] << ", " << std::endl; std::cout << " Model = " << intrinsics_left.model << std::endl; rs2_intrinsics intrinsics_right = cam_right.as().get_intrinsics(); width_img = intrinsics_right.width; height_img = intrinsics_right.height; cout << "Right camera: \n"; std::cout << " fx = " << intrinsics_right.fx << std::endl; std::cout << " fy = " << intrinsics_right.fy << std::endl; std::cout << " cx = " << intrinsics_right.ppx << std::endl; std::cout << " cy = " << intrinsics_right.ppy << std::endl; std::cout << " height = " << intrinsics_right.height << std::endl; std::cout << " width = " << intrinsics_right.width << std::endl; std::cout << " Coeff = " << intrinsics_right.coeffs[0] << ", " << intrinsics_right.coeffs[1] << ", " << intrinsics_right.coeffs[2] << ", " << intrinsics_right.coeffs[3] << ", " << intrinsics_right.coeffs[4] << ", " << std::endl; std::cout << " Model = " << intrinsics_right.model << std::endl; // Create SLAM system. It initializes all system threads and gets ready to process frames. ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_STEREO, true, 0, file_name); float imageScale = SLAM.GetImageScale(); double timestamp; cv::Mat im, imRight; // Clear IMU vectors v_gyro_data.clear(); v_gyro_timestamp.clear(); v_accel_data_sync.clear(); v_accel_timestamp_sync.clear(); double t_resize = 0.f; double t_track = 0.f; while (!SLAM.isShutDown()) { std::vector vGyro; std::vector vGyro_times; std::vector vAccel; std::vector vAccel_times; { std::unique_lock lk(imu_mutex); if(!image_ready) cond_image_rec.wait(lk); #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point time_Start_Process = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point time_Start_Process = std::chrono::monotonic_clock::now(); #endif if(count_im_buffer>1) cout << count_im_buffer -1 << " dropped frs\n"; count_im_buffer = 0; while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()) { int index = v_accel_timestamp_sync.size(); double target_time = v_gyro_timestamp[index]; rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp); v_accel_data_sync.push_back(interp_data); // v_accel_data_sync.push_back(current_accel_data); // 0 interpolation v_accel_timestamp_sync.push_back(target_time); } // Copy the IMU data vGyro = v_gyro_data; vGyro_times = v_gyro_timestamp; vAccel = v_accel_data_sync; vAccel_times = v_accel_timestamp_sync; timestamp = timestamp_image; im = imCV.clone(); imRight = imRightCV.clone(); // Clear IMU vectors v_gyro_data.clear(); v_gyro_timestamp.clear(); v_accel_data_sync.clear(); v_accel_timestamp_sync.clear(); image_ready = false; } for(int i=0; i >(t_End_Resize - t_Start_Resize).count(); SLAM.InsertResizeTime(t_resize); #endif } #ifdef REGISTER_TIMES #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_Start_Track = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_Start_Track = std::chrono::monotonic_clock::now(); #endif #endif // Stereo images are already rectified. SLAM.TrackStereo(im, imRight, timestamp, vImuMeas); #ifdef REGISTER_TIMES #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_End_Track = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_End_Track = std::chrono::monotonic_clock::now(); #endif t_track = t_resize + std::chrono::duration_cast >(t_End_Track - t_Start_Track).count(); SLAM.InsertTrackTime(t_track); #endif // Clear the previous IMU measurements to load the new ones vImuMeas.clear(); } cout << "System shutdown!\n"; } rs2_vector interpolateMeasure(const double target_time, const rs2_vector current_data, const double current_time, const rs2_vector prev_data, const double prev_time) { // If there are not previous information, the current data is propagated if(prev_time == 0) { return current_data; } rs2_vector increment; rs2_vector value_interp; if(target_time > current_time) { value_interp = current_data; } else if(target_time > prev_time) { increment.x = current_data.x - prev_data.x; increment.y = current_data.y - prev_data.y; increment.z = current_data.z - prev_data.z; double factor = (target_time - prev_time) / (current_time - prev_time); value_interp.x = prev_data.x + increment.x * factor; value_interp.y = prev_data.y + increment.y * factor; value_interp.z = prev_data.z + increment.z * factor; // zero interpolation value_interp = current_data; } else { value_interp = prev_data; } return value_interp; }