# Modified by Raul Mur-Artal # Automatically compute the optimal scale factor for monocular VO/SLAM. # Software License Agreement (BSD License) # # Copyright (c) 2013, Juergen Sturm, TUM # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of TUM nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Requirements: # sudo apt-get install python-argparse """ This script computes the absolute trajectory error from the ground truth trajectory and the estimated trajectory. """ import sys import numpy import argparse import associate def align(model,data): """Align two trajectories using the method of Horn (closed-form). Input: model -- first trajectory (3xn) data -- second trajectory (3xn) Output: rot -- rotation matrix (3x3) trans -- translation vector (3x1) trans_error -- translational error per point (1xn) """ numpy.set_printoptions(precision=3,suppress=True) model_zerocentered = model - model.mean(1) data_zerocentered = data - data.mean(1) W = numpy.zeros( (3,3) ) for column in range(model.shape[1]): W += numpy.outer(model_zerocentered[:,column],data_zerocentered[:,column]) U,d,Vh = numpy.linalg.linalg.svd(W.transpose()) S = numpy.matrix(numpy.identity( 3 )) if(numpy.linalg.det(U) * numpy.linalg.det(Vh)<0): S[2,2] = -1 rot = U*S*Vh rotmodel = rot*model_zerocentered dots = 0.0 norms = 0.0 for column in range(data_zerocentered.shape[1]): dots += numpy.dot(data_zerocentered[:,column].transpose(),rotmodel[:,column]) normi = numpy.linalg.norm(model_zerocentered[:,column]) norms += normi*normi s = float(dots/norms) transGT = data.mean(1) - s*rot * model.mean(1) trans = data.mean(1) - rot * model.mean(1) model_alignedGT = s*rot * model + transGT model_aligned = rot * model + trans alignment_errorGT = model_alignedGT - data alignment_error = model_aligned - data trans_errorGT = numpy.sqrt(numpy.sum(numpy.multiply(alignment_errorGT,alignment_errorGT),0)).A[0] trans_error = numpy.sqrt(numpy.sum(numpy.multiply(alignment_error,alignment_error),0)).A[0] return rot,transGT,trans_errorGT,trans,trans_error, s def plot_traj(ax,stamps,traj,style,color,label): """ Plot a trajectory using matplotlib. Input: ax -- the plot stamps -- time stamps (1xn) traj -- trajectory (3xn) style -- line style color -- line color label -- plot legend """ stamps.sort() interval = numpy.median([s-t for s,t in zip(stamps[1:],stamps[:-1])]) x = [] y = [] last = stamps[0] for i in range(len(stamps)): if stamps[i]-last < 2*interval: x.append(traj[i][0]) y.append(traj[i][1]) elif len(x)>0: ax.plot(x,y,style,color=color,label=label) label="" x=[] y=[] last= stamps[i] if len(x)>0: ax.plot(x,y,style,color=color,label=label) if __name__=="__main__": # parse command line parser = argparse.ArgumentParser(description=''' This script computes the absolute trajectory error from the ground truth trajectory and the estimated trajectory. ''') parser.add_argument('first_file', help='ground truth trajectory (format: timestamp tx ty tz qx qy qz qw)') parser.add_argument('second_file', help='estimated trajectory (format: timestamp tx ty tz qx qy qz qw)') parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0) parser.add_argument('--scale', help='scaling factor for the second trajectory (default: 1.0)',default=1.0) parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 10000000 ns)',default=20000000) parser.add_argument('--save', help='save aligned second trajectory to disk (format: stamp2 x2 y2 z2)') parser.add_argument('--save_associations', help='save associated first and aligned second trajectory to disk (format: stamp1 x1 y1 z1 stamp2 x2 y2 z2)') parser.add_argument('--plot', help='plot the first and the aligned second trajectory to an image (format: png)') parser.add_argument('--verbose', help='print all evaluation data (otherwise, only the RMSE absolute translational error in meters after alignment will be printed)', action='store_true') parser.add_argument('--verbose2', help='print scale eror and RMSE absolute translational error in meters after alignment with and without scale correction', action='store_true') args = parser.parse_args() first_list = associate.read_file_list(args.first_file, False) second_list = associate.read_file_list(args.second_file, False) matches = associate.associate(first_list, second_list,float(args.offset),float(args.max_difference)) if len(matches)<2: sys.exit("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory! Did you choose the correct sequence?") first_xyz = numpy.matrix([[float(value) for value in first_list[a][0:3]] for a,b in matches]).transpose() second_xyz = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for a,b in matches]).transpose() dictionary_items = second_list.items() sorted_second_list = sorted(dictionary_items) second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in sorted_second_list[i][1][0:3]] for i in range(len(sorted_second_list))]).transpose() # sorted_second_list.keys()]).transpose() rot,transGT,trans_errorGT,trans,trans_error, scale = align(second_xyz,first_xyz) second_xyz_aligned = scale * rot * second_xyz + trans second_xyz_notscaled = rot * second_xyz + trans second_xyz_notscaled_full = rot * second_xyz_full + trans first_stamps = first_list.keys() first_stamps.sort() first_xyz_full = numpy.matrix([[float(value) for value in first_list[b][0:3]] for b in first_stamps]).transpose() second_stamps = second_list.keys() second_stamps.sort() second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for b in second_stamps]).transpose() second_xyz_full_aligned = scale * rot * second_xyz_full + trans if args.verbose: print "compared_pose_pairs %d pairs"%(len(trans_error)) print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)) print "absolute_translational_error.mean %f m"%numpy.mean(trans_error) print "absolute_translational_error.median %f m"%numpy.median(trans_error) print "absolute_translational_error.std %f m"%numpy.std(trans_error) print "absolute_translational_error.min %f m"%numpy.min(trans_error) print "absolute_translational_error.max %f m"%numpy.max(trans_error) print "max idx: %i" %numpy.argmax(trans_error) else: # print "%f, %f " % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale) # print "%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale) print "%f,%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale, numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT))) # print "%f" % len(trans_error) if args.verbose2: print "compared_pose_pairs %d pairs"%(len(trans_error)) print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)) print "absolute_translational_errorGT.rmse %f m"%numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT)) if args.save_associations: file = open(args.save_associations,"w") file.write("\n".join(["%f %f %f %f %f %f %f %f"%(a,x1,y1,z1,b,x2,y2,z2) for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A)])) file.close() if args.save: file = open(args.save,"w") file.write("\n".join(["%f "%stamp+" ".join(["%f"%d for d in line]) for stamp,line in zip(second_stamps,second_xyz_notscaled_full.transpose().A)])) file.close() if args.plot: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.pylab as pylab from matplotlib.patches import Ellipse fig = plt.figure() ax = fig.add_subplot(111) plot_traj(ax,first_stamps,first_xyz_full.transpose().A,'-',"black","ground truth") plot_traj(ax,second_stamps,second_xyz_full_aligned.transpose().A,'-',"blue","estimated") label="difference" for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A): ax.plot([x1,x2],[y1,y2],'-',color="red",label=label) label="" ax.legend() ax.set_xlabel('x [m]') ax.set_ylabel('y [m]') plt.axis('equal') plt.savefig(args.plot,format="pdf")