#include #include #include "tests.hpp" // Explicit instantiate all class templates so that all member methods // get compiled and for code coverage analysis. namespace Eigen { template class Map>; template class Map const>; } // namespace Eigen namespace Sophus { template class SE3; template class SE3; #if SOPHUS_CERES template class SE3>; #endif template class Tests { public: using SE3Type = SE3; using SO3Type = SO3; using Point = typename SE3::Point; using Tangent = typename SE3::Tangent; Scalar const kPi = Constants::pi(); Tests() { se3_vec_ = getTestSE3s(); Tangent tmp; tmp << Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0); tangent_vec_.push_back(tmp); tmp << Scalar(1), Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0); tangent_vec_.push_back(tmp); tmp << Scalar(0), Scalar(1), Scalar(0), Scalar(1), Scalar(0), Scalar(0); tangent_vec_.push_back(tmp); tmp << Scalar(0), Scalar(-5), Scalar(10), Scalar(0), Scalar(0), Scalar(0); tangent_vec_.push_back(tmp); tmp << Scalar(-1), Scalar(1), Scalar(0), Scalar(0), Scalar(0), Scalar(1); tangent_vec_.push_back(tmp); tmp << Scalar(20), Scalar(-1), Scalar(0), Scalar(-1), Scalar(1), Scalar(0); tangent_vec_.push_back(tmp); tmp << Scalar(30), Scalar(5), Scalar(-1), Scalar(20), Scalar(-1), Scalar(0); tangent_vec_.push_back(tmp); point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4))); point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5))); } void runAll() { bool passed = testLieProperties(); passed &= testRawDataAcces(); passed &= testMutatingAccessors(); passed &= testConstructors(); passed &= testFit(); processTestResult(passed); } private: bool testLieProperties() { LieGroupTests tests(se3_vec_, tangent_vec_, point_vec_); return tests.doAllTestsPass(); } bool testRawDataAcces() { bool passed = true; Eigen::Matrix raw; raw << Scalar(0), Scalar(1), Scalar(0), Scalar(0), Scalar(1), Scalar(3), Scalar(2); Eigen::Map map_of_const_se3(raw.data()); SOPHUS_TEST_APPROX( passed, map_of_const_se3.unit_quaternion().coeffs().eval(), raw.template head<4>().eval(), Constants::epsilon()); SOPHUS_TEST_APPROX(passed, map_of_const_se3.translation().eval(), raw.template tail<3>().eval(), Constants::epsilon()); SOPHUS_TEST_EQUAL( passed, map_of_const_se3.unit_quaternion().coeffs().data(), raw.data()); SOPHUS_TEST_EQUAL(passed, map_of_const_se3.translation().data(), raw.data() + 4); Eigen::Map const_shallow_copy = map_of_const_se3; SOPHUS_TEST_EQUAL(passed, const_shallow_copy.unit_quaternion().coeffs().eval(), map_of_const_se3.unit_quaternion().coeffs().eval()); SOPHUS_TEST_EQUAL(passed, const_shallow_copy.translation().eval(), map_of_const_se3.translation().eval()); Eigen::Matrix raw2; raw2 << Scalar(1), Scalar(0), Scalar(0), Scalar(0), Scalar(3), Scalar(2), Scalar(1); Eigen::Map map_of_se3(raw.data()); Eigen::Quaternion quat; quat.coeffs() = raw2.template head<4>(); map_of_se3.setQuaternion(quat); map_of_se3.translation() = raw2.template tail<3>(); SOPHUS_TEST_APPROX(passed, map_of_se3.unit_quaternion().coeffs().eval(), raw2.template head<4>().eval(), Constants::epsilon()); SOPHUS_TEST_APPROX(passed, map_of_se3.translation().eval(), raw2.template tail<3>().eval(), Constants::epsilon()); SOPHUS_TEST_EQUAL(passed, map_of_se3.unit_quaternion().coeffs().data(), raw.data()); SOPHUS_TEST_EQUAL(passed, map_of_se3.translation().data(), raw.data() + 4); SOPHUS_TEST_NEQ(passed, map_of_se3.unit_quaternion().coeffs().data(), quat.coeffs().data()); Eigen::Map shallow_copy = map_of_se3; SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_quaternion().coeffs().eval(), map_of_se3.unit_quaternion().coeffs().eval()); SOPHUS_TEST_EQUAL(passed, shallow_copy.translation().eval(), map_of_se3.translation().eval()); Eigen::Map const const_map_of_se3 = map_of_se3; SOPHUS_TEST_EQUAL(passed, const_map_of_se3.unit_quaternion().coeffs().eval(), map_of_se3.unit_quaternion().coeffs().eval()); SOPHUS_TEST_EQUAL(passed, const_map_of_se3.translation().eval(), map_of_se3.translation().eval()); SE3Type const const_se3(quat, raw2.template tail<3>().eval()); for (int i = 0; i < 7; ++i) { SOPHUS_TEST_EQUAL(passed, const_se3.data()[i], raw2.data()[i]); } SE3Type se3(quat, raw2.template tail<3>().eval()); for (int i = 0; i < 7; ++i) { SOPHUS_TEST_EQUAL(passed, se3.data()[i], raw2.data()[i]); } for (int i = 0; i < 7; ++i) { SOPHUS_TEST_EQUAL(passed, se3.data()[i], raw.data()[i]); } SE3Type trans = SE3Type::transX(Scalar(0.2)); SOPHUS_TEST_APPROX(passed, trans.translation().x(), Scalar(0.2), Constants::epsilon()); trans = SE3Type::transY(Scalar(0.7)); SOPHUS_TEST_APPROX(passed, trans.translation().y(), Scalar(0.7), Constants::epsilon()); trans = SE3Type::transZ(Scalar(-0.2)); SOPHUS_TEST_APPROX(passed, trans.translation().z(), Scalar(-0.2), Constants::epsilon()); Tangent t; t << Scalar(0), Scalar(0), Scalar(0), Scalar(0.2), Scalar(0), Scalar(0); SOPHUS_TEST_EQUAL(passed, SE3Type::rotX(Scalar(0.2)).matrix(), SE3Type::exp(t).matrix()); t << Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(-0.2), Scalar(0); SOPHUS_TEST_EQUAL(passed, SE3Type::rotY(Scalar(-0.2)).matrix(), SE3Type::exp(t).matrix()); t << Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(1.1); SOPHUS_TEST_EQUAL(passed, SE3Type::rotZ(Scalar(1.1)).matrix(), SE3Type::exp(t).matrix()); Eigen::Matrix data1, data2; data1 << Scalar(0), Scalar(1), Scalar(0), Scalar(0), Scalar(1), Scalar(2), Scalar(3); data1 << Scalar(0), Scalar(0), Scalar(1), Scalar(0), Scalar(3), Scalar(2), Scalar(1); Eigen::Map map1(data1.data()), map2(data2.data()); // map -> map assignment map2 = map1; SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix()); // map -> type assignment SE3Type copy; copy = map1; SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix()); // type -> map assignment copy = SE3Type::trans(Scalar(4), Scalar(5), Scalar(6)) * SE3Type::rotZ(Scalar(0.5)); map1 = copy; SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix()); return passed; } bool testMutatingAccessors() { bool passed = true; SE3Type se3; SO3Type R(SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0)))); se3.setRotationMatrix(R.matrix()); SOPHUS_TEST_APPROX(passed, se3.rotationMatrix(), R.matrix(), Constants::epsilon()); return passed; } bool testConstructors() { bool passed = true; Eigen::Matrix I = Eigen::Matrix::Identity(); SOPHUS_TEST_EQUAL(passed, SE3Type().matrix(), I); SE3Type se3 = se3_vec_.front(); Point translation = se3.translation(); SO3Type so3 = se3.so3(); SOPHUS_TEST_APPROX(passed, SE3Type(so3, translation).matrix(), se3.matrix(), Constants::epsilon()); SOPHUS_TEST_APPROX(passed, SE3Type(so3.matrix(), translation).matrix(), se3.matrix(), Constants::epsilon()); SOPHUS_TEST_APPROX(passed, SE3Type(so3.unit_quaternion(), translation).matrix(), se3.matrix(), Constants::epsilon()); SOPHUS_TEST_APPROX(passed, SE3Type(se3.matrix()).matrix(), se3.matrix(), Constants::epsilon()); return passed; } template enable_if_t::value, bool> testFit() { bool passed = true; for (int i = 0; i < 100; ++i) { Matrix4 T = Matrix4::Random(); SE3Type se3 = SE3Type::fitToSE3(T); SE3Type se3_2 = SE3Type::fitToSE3(se3.matrix()); SOPHUS_TEST_APPROX(passed, se3.matrix(), se3_2.matrix(), Constants::epsilon()); } for (Scalar const angle : {Scalar(0.0), Scalar(0.1), Scalar(0.3), Scalar(-0.7)}) { SOPHUS_TEST_APPROX(passed, SE3Type::rotX(angle).angleX(), angle, Constants::epsilon()); SOPHUS_TEST_APPROX(passed, SE3Type::rotY(angle).angleY(), angle, Constants::epsilon()); SOPHUS_TEST_APPROX(passed, SE3Type::rotZ(angle).angleZ(), angle, Constants::epsilon()); } return passed; } template enable_if_t::value, bool> testFit() { return true; } std::vector> se3_vec_; std::vector> tangent_vec_; std::vector> point_vec_; }; int test_se3() { using std::cerr; using std::endl; cerr << "Test SE3" << endl << endl; cerr << "Double tests: " << endl; Tests().runAll(); cerr << "Float tests: " << endl; Tests().runAll(); #if SOPHUS_CERES cerr << "ceres::Jet tests: " << endl; Tests>().runAll(); #endif return 0; } } // namespace Sophus int main() { return Sophus::test_se3(); }