ORB-SLAM3/Examples/Calibration/recorder_realsense_D435i.cc

286 lines
9.3 KiB
C++

/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <signal.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <fstream>
#include <chrono>
#include <ctime>
#include <sstream>
#include <iomanip>
#include <condition_variable>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui.hpp>
#include <librealsense2/rs.hpp>
#include "librealsense2/rsutil.h"
using namespace std;
bool b_continue_session;
void exit_loop_handler(int s){
cout << "Finishing session" << endl;
b_continue_session = false;
}
static rs2_option get_sensor_option(const rs2::sensor& sensor)
{
// Sensors usually have several options to control their properties
// such as Exposure, Brightness etc.
std::cout << "Sensor supports the following options:\n" << std::endl;
// The following loop shows how to iterate over all available options
// Starting from 0 until RS2_OPTION_COUNT (exclusive)
for (int i = 0; i < static_cast<int>(RS2_OPTION_COUNT); i++)
{
rs2_option option_type = static_cast<rs2_option>(i);
//SDK enum types can be streamed to get a string that represents them
std::cout << " " << i << ": " << option_type;
// To control an option, use the following api:
// First, verify that the sensor actually supports this option
if (sensor.supports(option_type))
{
std::cout << std::endl;
// Get a human readable description of the option
const char* description = sensor.get_option_description(option_type);
std::cout << " Description : " << description << std::endl;
// Get the current value of the option
float current_value = sensor.get_option(option_type);
std::cout << " Current Value : " << current_value << std::endl;
//To change the value of an option, please follow the change_sensor_option() function
}
else
{
std::cout << " is not supported" << std::endl;
}
}
uint32_t selected_sensor_option = 0;
return static_cast<rs2_option>(selected_sensor_option);
}
int main(int argc, char **argv) {
if (argc != 2) {
cerr << endl
<< "Usage: ./recorder_realsense_D435i path_to_saving_folder"
<< endl;
return 1;
}
string directory = string(argv[argc - 1]);
struct sigaction sigIntHandler;
sigIntHandler.sa_handler = exit_loop_handler;
sigemptyset(&sigIntHandler.sa_mask);
sigIntHandler.sa_flags = 0;
sigaction(SIGINT, &sigIntHandler, NULL);
b_continue_session = true;
double offset = 0; // ms
rs2::context ctx;
rs2::device_list devices = ctx.query_devices();
rs2::device selected_device;
if (devices.size() == 0)
{
std::cerr << "No device connected, please connect a RealSense device" << std::endl;
return 0;
}
else
selected_device = devices[0];
std::vector<rs2::sensor> sensors = selected_device.query_sensors();
int index = 0;
// We can now iterate the sensors and print their names
for (rs2::sensor sensor : sensors)
if (sensor.supports(RS2_CAMERA_INFO_NAME)) {
++index;
if (index == 1) {
sensor.set_option(RS2_OPTION_ENABLE_AUTO_EXPOSURE, 1);
sensor.set_option(RS2_OPTION_AUTO_EXPOSURE_LIMIT,5000);
sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 0);
}
// std::cout << " " << index << " : " << sensor.get_info(RS2_CAMERA_INFO_NAME) << std::endl;
get_sensor_option(sensor);
if (index == 2){
// RGB camera
sensor.set_option(RS2_OPTION_EXPOSURE,100.f);
}
if (index == 3){
sensor.set_option(RS2_OPTION_ENABLE_MOTION_CORRECTION,0);
}
}
// Declare RealSense pipeline, encapsulating the actual device and sensors
rs2::pipeline pipe;
// Create a configuration for configuring the pipeline with a non default profile
rs2::config cfg;
cfg.enable_stream(RS2_STREAM_INFRARED, 1, 640, 480, RS2_FORMAT_Y8, 30);
cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F); //, 250); // 63
cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F); //, 400);
// IMU callback
std::mutex imu_mutex;
std::condition_variable cond_image_rec;
vector<double> v_gyro_timestamp;
vector<rs2_vector> v_gyro_data;
vector<double> v_acc_timestamp;
vector<rs2_vector> v_acc_data;
cv::Mat imCV;
int width_img, height_img;
double timestamp_image;
bool image_ready = false;
auto imu_callback = [&](const rs2::frame& frame)
{
std::unique_lock<std::mutex> lock(imu_mutex);
if(rs2::frameset fs = frame.as<rs2::frameset>())
{
rs2::video_frame color_frame = fs.get_infrared_frame();
imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame.get_data()), cv::Mat::AUTO_STEP);
timestamp_image = fs.get_timestamp()*1e-3;
image_ready = true;
lock.unlock();
cond_image_rec.notify_all();
}
else if (rs2::motion_frame m_frame = frame.as<rs2::motion_frame>())
{
if (m_frame.get_profile().stream_name() == "Gyro")
{
// It runs at 200Hz
v_gyro_data.push_back(m_frame.get_motion_data());
v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3);
}
else if (m_frame.get_profile().stream_name() == "Accel")
{
// It runs at 60Hz
v_acc_data.push_back(m_frame.get_motion_data());
v_acc_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3);
}
}
};
rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback);
rs2::stream_profile cam_stream = pipe_profile.get_stream(RS2_STREAM_INFRARED, 1);
rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO);
rs2_intrinsics intrinsics_cam = cam_stream.as<rs2::video_stream_profile>().get_intrinsics();
width_img = intrinsics_cam.width;
height_img = intrinsics_cam.height;
cv::Mat im;
ofstream accFile, gyroFile, cam0TsFile;
accFile.open (directory + "/IMU/acc.txt");
gyroFile.open (directory + "/IMU/gyro.txt");
cam0TsFile.open (directory + "/cam0/times.txt");
// Clear IMU vectors
v_gyro_data.clear();
v_gyro_timestamp.clear();
v_acc_data.clear();
v_acc_timestamp.clear();
cv::namedWindow("cam0",cv::WINDOW_AUTOSIZE);
while (b_continue_session){
std::vector<rs2_vector> vGyro;
std::vector<double> vGyro_times;
std::vector<rs2_vector> vAccel, vAccel_Sync;
std::vector<double> vAccel_times;
double imTs;
{
{
std::unique_lock<std::mutex> lk(imu_mutex);
if (!image_ready) // wait until image read from the other thread
cond_image_rec.wait(lk);
}
std::lock_guard<std::mutex> lk(imu_mutex);
// Copy the IMU data to local single thread variables
vGyro = v_gyro_data;
vGyro_times = v_gyro_timestamp;
vAccel = v_acc_data;
vAccel_times = v_acc_timestamp;
imTs = timestamp_image;
im = imCV.clone();
// Clear IMU vectors
v_gyro_data.clear();
v_gyro_timestamp.clear();
v_acc_data.clear();
v_acc_timestamp.clear();
image_ready = false;
}
cv::imshow("cam0",im);
// save image and IMU data
long int imTsInt = (long int) (1e9*imTs);
string imgRepo = directory + "/cam0/" + to_string(imTsInt) + ".png";
if(!im.empty()) {
cv::imwrite(imgRepo, im);
cam0TsFile << imTsInt << endl;
} else {
cout << "image empty!! \n";
}
//assert(vAccel.size() == vAccel_times.size());
//assert(vGyro.size() == vGyro_times.size());
for(int i=0; i<vAccel.size(); ++i){
accFile << std::setprecision(15) << vAccel_times[i] << "," << vAccel[i].x << "," << vAccel[i].y << "," << vAccel[i].z << endl;
}
for(int i=0; i<vGyro.size(); ++i){
gyroFile << std::setprecision(15) << vGyro_times[i] << "," << vGyro[i].x << "," << vGyro[i].y << "," << vGyro[i].z << endl;
}
cv::waitKey(10);
}
accFile.close();
gyroFile.close();
cam0TsFile.close();
cout << "System shutdown!\n";
}