94 lines
2.8 KiB
C++
94 lines
2.8 KiB
C++
/// @file
|
|
/// Numerical differentiation using finite differences
|
|
|
|
#ifndef SOPHUS_NUM_DIFF_HPP
|
|
#define SOPHUS_NUM_DIFF_HPP
|
|
|
|
#include <functional>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "types.hpp"
|
|
|
|
namespace Sophus {
|
|
|
|
namespace details {
|
|
template <class Scalar>
|
|
class Curve {
|
|
public:
|
|
template <class Fn>
|
|
static auto num_diff(Fn curve, Scalar t, Scalar h) -> decltype(curve(t)) {
|
|
using ReturnType = decltype(curve(t));
|
|
static_assert(std::is_floating_point<Scalar>::value,
|
|
"Scalar must be a floating point type.");
|
|
static_assert(IsFloatingPoint<ReturnType>::value,
|
|
"ReturnType must be either a floating point scalar, "
|
|
"vector or matrix.");
|
|
|
|
return (curve(t + h) - curve(t - h)) / (Scalar(2) * h);
|
|
}
|
|
};
|
|
|
|
template <class Scalar, int N, int M>
|
|
class VectorField {
|
|
public:
|
|
static Eigen::Matrix<Scalar, N, M> num_diff(
|
|
std::function<Sophus::Vector<Scalar, N>(Sophus::Vector<Scalar, M>)>
|
|
vector_field,
|
|
Sophus::Vector<Scalar, M> const& a, Scalar eps) {
|
|
static_assert(std::is_floating_point<Scalar>::value,
|
|
"Scalar must be a floating point type.");
|
|
Eigen::Matrix<Scalar, N, M> J;
|
|
Sophus::Vector<Scalar, M> h;
|
|
h.setZero();
|
|
for (int i = 0; i < M; ++i) {
|
|
h[i] = eps;
|
|
J.col(i) =
|
|
(vector_field(a + h) - vector_field(a - h)) / (Scalar(2) * eps);
|
|
h[i] = Scalar(0);
|
|
}
|
|
|
|
return J;
|
|
}
|
|
};
|
|
|
|
template <class Scalar, int N>
|
|
class VectorField<Scalar, N, 1> {
|
|
public:
|
|
static Eigen::Matrix<Scalar, N, 1> num_diff(
|
|
std::function<Sophus::Vector<Scalar, N>(Scalar)> vector_field,
|
|
Scalar const& a, Scalar eps) {
|
|
return details::Curve<Scalar>::num_diff(std::move(vector_field), a, eps);
|
|
}
|
|
};
|
|
} // namespace details
|
|
|
|
/// Calculates the derivative of a curve at a point ``t``.
|
|
///
|
|
/// Here, a curve is a function from a Scalar to a Euclidean space. Thus, it
|
|
/// returns either a Scalar, a vector or a matrix.
|
|
///
|
|
template <class Scalar, class Fn>
|
|
auto curveNumDiff(Fn curve, Scalar t,
|
|
Scalar h = Constants<Scalar>::epsilonSqrt())
|
|
-> decltype(details::Curve<Scalar>::num_diff(std::move(curve), t, h)) {
|
|
return details::Curve<Scalar>::num_diff(std::move(curve), t, h);
|
|
}
|
|
|
|
/// Calculates the derivative of a vector field at a point ``a``.
|
|
///
|
|
/// Here, a vector field is a function from a vector space to another vector
|
|
/// space.
|
|
///
|
|
template <class Scalar, int N, int M, class ScalarOrVector, class Fn>
|
|
Eigen::Matrix<Scalar, N, M> vectorFieldNumDiff(
|
|
Fn vector_field, ScalarOrVector const& a,
|
|
Scalar eps = Constants<Scalar>::epsilonSqrt()) {
|
|
return details::VectorField<Scalar, N, M>::num_diff(std::move(vector_field),
|
|
a, eps);
|
|
}
|
|
|
|
} // namespace Sophus
|
|
|
|
#endif // SOPHUS_NUM_DIFF_HPP
|