ORB-SLAM3/Thirdparty/Sophus/test/core/test_rxso2.cpp

262 lines
9.5 KiB
C++

#include <iostream>
#include <sophus/rxso2.hpp>
#include "tests.hpp"
// Explicit instantiate all class templates so that all member methods
// get compiled and for code coverage analysis.
namespace Eigen {
template class Map<Sophus::RxSO2<double>>;
template class Map<Sophus::RxSO2<double> const>;
} // namespace Eigen
namespace Sophus {
template class RxSO2<double, Eigen::AutoAlign>;
template class RxSO2<float, Eigen::DontAlign>;
#if SOPHUS_CERES
template class RxSO2<ceres::Jet<double, 3>>;
#endif
template <class Scalar>
class Tests {
public:
using SO2Type = SO2<Scalar>;
using RxSO2Type = RxSO2<Scalar>;
using RotationMatrixType = typename SO2<Scalar>::Transformation;
using Point = typename RxSO2<Scalar>::Point;
using Tangent = typename RxSO2<Scalar>::Tangent;
Scalar const kPi = Constants<Scalar>::pi();
Tests() {
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(0.2, 1.)));
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(0.2, 1.1)));
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(0., 1.1)));
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(0.00001, 0.)));
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(0.00001, 0.00001)));
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(kPi, 0.9)));
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(0.2, 0)) *
RxSO2Type::exp(Tangent(kPi, 0.0)) *
RxSO2Type::exp(Tangent(-0.2, 0)));
rxso2_vec_.push_back(RxSO2Type::exp(Tangent(0.3, 0)) *
RxSO2Type::exp(Tangent(kPi, 0.001)) *
RxSO2Type::exp(Tangent(-0.3, 0)));
Tangent tmp;
tmp << Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(1), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(1), Scalar(0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(-0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(-1), Scalar(-0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(20), Scalar(2);
tangent_vec_.push_back(tmp);
point_vec_.push_back(Point(Scalar(1), Scalar(4)));
point_vec_.push_back(Point(Scalar(1), Scalar(-3)));
}
template <class S = Scalar>
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
bool passed = true;
for (int i = 0; i < 10; ++i) {
Matrix2<Scalar> M = Matrix2<Scalar>::Random();
for (Scalar scale : {Scalar(0.01), Scalar(0.99), Scalar(1), Scalar(10)}) {
Matrix2<Scalar> R = makeRotationMatrix(M);
Matrix2<Scalar> sR = scale * R;
SOPHUS_TEST(passed, isScaledOrthogonalAndPositive(sR),
"isScaledOrthogonalAndPositive(sR): % *\n%", scale, R);
Matrix2<Scalar> sR_cols_swapped;
sR_cols_swapped << sR.col(1), sR.col(0);
SOPHUS_TEST(passed, !isScaledOrthogonalAndPositive(sR_cols_swapped),
"isScaledOrthogonalAndPositive(-sR): % *\n%", scale, R);
}
}
return passed;
}
template <class S = Scalar>
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
return true;
}
void runAll() {
bool passed = testLieProperties();
passed &= testSaturation();
passed &= testRawDataAcces();
passed &= testConstructors();
passed &= testFit();
processTestResult(passed);
}
private:
bool testLieProperties() {
LieGroupTests<RxSO2Type> tests(rxso2_vec_, tangent_vec_, point_vec_);
return tests.doAllTestsPass();
}
bool testSaturation() {
bool passed = true;
RxSO2Type small1(Scalar(1.1) * Constants<Scalar>::epsilon(), SO2Type());
RxSO2Type small2(Scalar(1.1) * Constants<Scalar>::epsilon(),
SO2Type::exp(Constants<Scalar>::pi()));
RxSO2Type saturated_product = small1 * small2;
SOPHUS_TEST_APPROX(passed, saturated_product.scale(),
Constants<Scalar>::epsilon(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, saturated_product.so2().matrix(),
(small1.so2() * small2.so2()).matrix(),
Constants<Scalar>::epsilon());
return passed;
}
bool testRawDataAcces() {
bool passed = true;
Eigen::Matrix<Scalar, 2, 1> raw = {0, 1};
Eigen::Map<RxSO2Type const> map_of_const_rxso2(raw.data());
SOPHUS_TEST_APPROX(passed, map_of_const_rxso2.complex().eval(), raw,
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_const_rxso2.complex().data(), raw.data());
Eigen::Map<RxSO2Type const> const_shallow_copy = map_of_const_rxso2;
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.complex().eval(),
map_of_const_rxso2.complex().eval());
Eigen::Matrix<Scalar, 2, 1> raw2 = {1, 0};
Eigen::Map<RxSO2Type> map_of_rxso2(raw2.data());
SOPHUS_TEST_APPROX(passed, map_of_rxso2.complex().eval(), raw2,
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_rxso2.complex().data(), raw2.data());
Eigen::Map<RxSO2Type> shallow_copy = map_of_rxso2;
SOPHUS_TEST_EQUAL(passed, shallow_copy.complex().eval(),
map_of_rxso2.complex().eval());
RxSO2Type const const_so2(raw2);
for (int i = 0; i < 2; ++i) {
SOPHUS_TEST_EQUAL(passed, const_so2.data()[i], raw2.data()[i]);
}
RxSO2Type so2(raw2);
for (int i = 0; i < 2; ++i) {
so2.data()[i] = raw[i];
}
for (int i = 0; i < 2; ++i) {
SOPHUS_TEST_EQUAL(passed, so2.data()[i], raw.data()[i]);
}
// regression: test that rotationMatrix API doesn't change underlying value
// for non-const-map and compiles at all for const-map
Eigen::Matrix<Scalar, 2, 1> raw3 = {Scalar(2), Scalar(0)};
Eigen::Map<RxSO2Type> map_of_rxso2_3(raw3.data());
Eigen::Map<const RxSO2Type> const_map_of_rxso2_3(raw3.data());
RxSO2Type rxso2_copy3 = map_of_rxso2_3;
const RotationMatrixType r_ref = map_of_rxso2_3.so2().matrix();
const RotationMatrixType r = map_of_rxso2_3.rotationMatrix();
SOPHUS_TEST_APPROX(passed, r_ref, r, Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, map_of_rxso2_3.complex().eval(),
rxso2_copy3.complex().eval(),
Constants<Scalar>::epsilon());
const RotationMatrixType r_const = const_map_of_rxso2_3.rotationMatrix();
SOPHUS_TEST_APPROX(passed, r_ref, r_const, Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, const_map_of_rxso2_3.complex().eval(),
rxso2_copy3.complex().eval(),
Constants<Scalar>::epsilon());
Eigen::Matrix<Scalar, 2, 1> data1, data2;
data1 << Scalar(.1), Scalar(.2);
data2 << Scalar(.5), Scalar(.4);
Eigen::Map<RxSO2Type> map1(data1.data()), map2(data2.data());
// map -> map assignment
map2 = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
// map -> type assignment
RxSO2Type copy;
copy = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
// type -> map assignment
copy = RxSO2Type::exp(Tangent(Scalar(0.2), Scalar(0.5)));
map1 = copy;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
return passed;
}
bool testConstructors() {
bool passed = true;
RxSO2Type rxso2;
Scalar scale(1.2);
rxso2.setScale(scale);
SOPHUS_TEST_APPROX(passed, scale, rxso2.scale(),
Constants<Scalar>::epsilon(), "setScale");
Scalar angle(0.2);
rxso2.setAngle(angle);
SOPHUS_TEST_APPROX(passed, angle, rxso2.angle(),
Constants<Scalar>::epsilon(), "setAngle");
SOPHUS_TEST_APPROX(passed, scale, rxso2.scale(),
Constants<Scalar>::epsilon(),
"setAngle leaves scale as is");
auto so2 = rxso2_vec_[0].so2();
rxso2.setSO2(so2);
SOPHUS_TEST_APPROX(passed, scale, rxso2.scale(),
Constants<Scalar>::epsilon(), "setSO2");
SOPHUS_TEST_APPROX(passed, RxSO2Type(scale, so2).matrix(), rxso2.matrix(),
Constants<Scalar>::epsilon(), "RxSO2(scale, SO2)");
SOPHUS_TEST_APPROX(passed, RxSO2Type(scale, so2.matrix()).matrix(),
rxso2.matrix(), Constants<Scalar>::epsilon(),
"RxSO2(scale, SO2)");
Matrix2<Scalar> R = SO2<Scalar>::exp(Scalar(0.2)).matrix();
Matrix2<Scalar> sR = R * Scalar(1.3);
SOPHUS_TEST_APPROX(passed, RxSO2Type(sR).matrix(), sR,
Constants<Scalar>::epsilon(), "RxSO2(sR)");
rxso2.setScaledRotationMatrix(sR);
SOPHUS_TEST_APPROX(passed, sR, rxso2.matrix(), Constants<Scalar>::epsilon(),
"setScaleRotationMatrix");
rxso2.setScale(scale);
rxso2.setRotationMatrix(R);
SOPHUS_TEST_APPROX(passed, R, rxso2.rotationMatrix(),
Constants<Scalar>::epsilon(), "setRotationMatrix");
SOPHUS_TEST_APPROX(passed, scale, rxso2.scale(),
Constants<Scalar>::epsilon(), "setScale");
return passed;
}
std::vector<RxSO2Type, Eigen::aligned_allocator<RxSO2Type>> rxso2_vec_;
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
};
int test_rxso2() {
using std::cerr;
using std::endl;
cerr << "Test RxSO2" << endl << endl;
cerr << "Double tests: " << endl;
Tests<double>().runAll();
cerr << "Float tests: " << endl;
Tests<float>().runAll();
#if SOPHUS_CERES
cerr << "ceres::Jet<double, 3> tests: " << endl;
Tests<ceres::Jet<double, 3>>().runAll();
#endif
return 0;
}
} // namespace Sophus
int main() { return Sophus::test_rxso2(); }