261 lines
9.3 KiB
C++
261 lines
9.3 KiB
C++
#include <iostream>
|
|
|
|
#include <sophus/se2.hpp>
|
|
#include <unsupported/Eigen/MatrixFunctions>
|
|
#include "tests.hpp"
|
|
|
|
// Explicit instantiate all class templates so that all member methods
|
|
// get compiled and for code coverage analysis.
|
|
namespace Eigen {
|
|
template class Map<Sophus::SE2<double>>;
|
|
template class Map<Sophus::SE2<double> const>;
|
|
} // namespace Eigen
|
|
|
|
namespace Sophus {
|
|
|
|
template class SE2<double, Eigen::AutoAlign>;
|
|
template class SE2<double, Eigen::DontAlign>;
|
|
#if SOPHUS_CERES
|
|
template class SE2<ceres::Jet<double, 3>>;
|
|
#endif
|
|
|
|
template <class Scalar>
|
|
class Tests {
|
|
public:
|
|
using SE2Type = SE2<Scalar>;
|
|
using SO2Type = SO2<Scalar>;
|
|
using Point = typename SE2<Scalar>::Point;
|
|
using Tangent = typename SE2<Scalar>::Tangent;
|
|
Scalar const kPi = Constants<Scalar>::pi();
|
|
|
|
Tests() {
|
|
se2_vec_.push_back(
|
|
SE2Type(SO2Type(Scalar(0.0)), Point(Scalar(0), Scalar(0))));
|
|
se2_vec_.push_back(
|
|
SE2Type(SO2Type(Scalar(0.2)), Point(Scalar(10), Scalar(0))));
|
|
se2_vec_.push_back(
|
|
SE2Type(SO2Type(Scalar(0.)), Point(Scalar(0), Scalar(100))));
|
|
se2_vec_.push_back(
|
|
SE2Type(SO2Type(Scalar(-1.)), Point(Scalar(20), -Scalar(1))));
|
|
se2_vec_.push_back(
|
|
SE2Type(SO2Type(Scalar(0.00001)),
|
|
Point(Scalar(-0.00000001), Scalar(0.0000000001))));
|
|
se2_vec_.push_back(
|
|
SE2Type(SO2Type(Scalar(0.2)), Point(Scalar(0), Scalar(0))) *
|
|
SE2Type(SO2Type(kPi), Point(Scalar(0), Scalar(0))) *
|
|
SE2Type(SO2Type(Scalar(-0.2)), Point(Scalar(0), Scalar(0))));
|
|
se2_vec_.push_back(
|
|
SE2Type(SO2Type(Scalar(0.3)), Point(Scalar(2), Scalar(0))) *
|
|
SE2Type(SO2Type(kPi), Point(Scalar(0), Scalar(0))) *
|
|
SE2Type(SO2Type(Scalar(-0.3)), Point(Scalar(0), Scalar(6))));
|
|
|
|
Tangent tmp;
|
|
tmp << Scalar(0), Scalar(0), Scalar(0);
|
|
tangent_vec_.push_back(tmp);
|
|
tmp << Scalar(1), Scalar(0), Scalar(0);
|
|
tangent_vec_.push_back(tmp);
|
|
tmp << Scalar(0), Scalar(1), Scalar(1);
|
|
tangent_vec_.push_back(tmp);
|
|
tmp << Scalar(-1), Scalar(1), Scalar(0);
|
|
tangent_vec_.push_back(tmp);
|
|
tmp << Scalar(20), Scalar(-1), Scalar(-1);
|
|
tangent_vec_.push_back(tmp);
|
|
tmp << Scalar(30), Scalar(5), Scalar(20);
|
|
tangent_vec_.push_back(tmp);
|
|
|
|
point_vec_.push_back(Point(1, 2));
|
|
point_vec_.push_back(Point(1, -3));
|
|
}
|
|
|
|
void runAll() {
|
|
bool passed = testLieProperties();
|
|
passed &= testRawDataAcces();
|
|
passed &= testMutatingAccessors();
|
|
passed &= testConstructors();
|
|
passed &= testFit();
|
|
processTestResult(passed);
|
|
}
|
|
|
|
private:
|
|
bool testLieProperties() {
|
|
LieGroupTests<SE2Type> tests(se2_vec_, tangent_vec_, point_vec_);
|
|
return tests.doAllTestsPass();
|
|
}
|
|
|
|
bool testRawDataAcces() {
|
|
bool passed = true;
|
|
Eigen::Matrix<Scalar, 4, 1> raw;
|
|
raw << Scalar(0), Scalar(1), Scalar(0), Scalar(3);
|
|
Eigen::Map<SE2Type const> const_se2_map(raw.data());
|
|
SOPHUS_TEST_APPROX(passed, const_se2_map.unit_complex().eval(),
|
|
raw.template head<2>().eval(),
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed, const_se2_map.translation().eval(),
|
|
raw.template tail<2>().eval(),
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_EQUAL(passed, const_se2_map.unit_complex().data(), raw.data());
|
|
SOPHUS_TEST_EQUAL(passed, const_se2_map.translation().data(),
|
|
raw.data() + 2);
|
|
Eigen::Map<SE2Type const> const_shallow_copy = const_se2_map;
|
|
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.unit_complex().eval(),
|
|
const_se2_map.unit_complex().eval());
|
|
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.translation().eval(),
|
|
const_se2_map.translation().eval());
|
|
|
|
Eigen::Matrix<Scalar, 4, 1> raw2;
|
|
raw2 << Scalar(1), Scalar(0), Scalar(3), Scalar(1);
|
|
Eigen::Map<SE2Type> map_of_se3(raw.data());
|
|
map_of_se3.setComplex(raw2.template head<2>());
|
|
map_of_se3.translation() = raw2.template tail<2>();
|
|
SOPHUS_TEST_APPROX(passed, map_of_se3.unit_complex().eval(),
|
|
raw2.template head<2>().eval(),
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed, map_of_se3.translation().eval(),
|
|
raw2.template tail<2>().eval(),
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_EQUAL(passed, map_of_se3.unit_complex().data(), raw.data());
|
|
SOPHUS_TEST_EQUAL(passed, map_of_se3.translation().data(), raw.data() + 2);
|
|
SOPHUS_TEST_NEQ(passed, map_of_se3.unit_complex().data(), raw2.data());
|
|
Eigen::Map<SE2Type> shallow_copy = map_of_se3;
|
|
SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_complex().eval(),
|
|
map_of_se3.unit_complex().eval());
|
|
SOPHUS_TEST_EQUAL(passed, shallow_copy.translation().eval(),
|
|
map_of_se3.translation().eval());
|
|
Eigen::Map<SE2Type> const const_map_of_se2 = map_of_se3;
|
|
SOPHUS_TEST_EQUAL(passed, const_map_of_se2.unit_complex().eval(),
|
|
map_of_se3.unit_complex().eval());
|
|
SOPHUS_TEST_EQUAL(passed, const_map_of_se2.translation().eval(),
|
|
map_of_se3.translation().eval());
|
|
|
|
SE2Type const const_se2(raw2.template head<2>().eval(),
|
|
raw2.template tail<2>().eval());
|
|
for (int i = 0; i < 4; ++i) {
|
|
SOPHUS_TEST_EQUAL(passed, const_se2.data()[i], raw2.data()[i]);
|
|
}
|
|
|
|
SE2Type se2(raw2.template head<2>().eval(), raw2.template tail<2>().eval());
|
|
for (int i = 0; i < 4; ++i) {
|
|
SOPHUS_TEST_EQUAL(passed, se2.data()[i], raw2.data()[i]);
|
|
}
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
SOPHUS_TEST_EQUAL(passed, se2.data()[i], raw.data()[i]);
|
|
}
|
|
|
|
SE2Type trans = SE2Type::transX(Scalar(0.2));
|
|
SOPHUS_TEST_APPROX(passed, trans.translation().x(), Scalar(0.2),
|
|
Constants<Scalar>::epsilon());
|
|
trans = SE2Type::transY(Scalar(0.7));
|
|
SOPHUS_TEST_APPROX(passed, trans.translation().y(), Scalar(0.7),
|
|
Constants<Scalar>::epsilon());
|
|
|
|
Eigen::Matrix<Scalar, 4, 1> data1, data2;
|
|
data1 << Scalar(0), Scalar(1), Scalar(1), Scalar(2);
|
|
data1 << Scalar(1), Scalar(0), Scalar(2), Scalar(1);
|
|
|
|
Eigen::Map<SE2Type> map1(data1.data()), map2(data2.data());
|
|
|
|
// map -> map assignment
|
|
map2 = map1;
|
|
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
|
|
|
|
// map -> type assignment
|
|
SE2Type copy;
|
|
copy = map1;
|
|
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
|
|
|
|
// type -> map assignment
|
|
copy = SE2Type::trans(Scalar(4), Scalar(5)) * SE2Type::rot(Scalar(0.5));
|
|
map1 = copy;
|
|
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
|
|
|
|
return passed;
|
|
}
|
|
|
|
bool testMutatingAccessors() {
|
|
bool passed = true;
|
|
SE2Type se2;
|
|
SO2Type R(Scalar(0.2));
|
|
se2.setRotationMatrix(R.matrix());
|
|
SOPHUS_TEST_APPROX(passed, se2.rotationMatrix(), R.matrix(),
|
|
Constants<Scalar>::epsilon());
|
|
|
|
Eigen::Matrix<Scalar, 4, 1> raw;
|
|
raw << Scalar(1), Scalar(0), Scalar(3), Scalar(1);
|
|
Eigen::Map<SE2Type> map_of_se2(raw.data());
|
|
map_of_se2.setRotationMatrix(R.matrix());
|
|
SOPHUS_TEST_APPROX(passed, map_of_se2.rotationMatrix(), R.matrix(),
|
|
Constants<Scalar>::epsilon());
|
|
|
|
return passed;
|
|
}
|
|
|
|
bool testConstructors() {
|
|
bool passed = true;
|
|
Matrix3<Scalar> I = Matrix3<Scalar>::Identity();
|
|
SOPHUS_TEST_EQUAL(passed, SE2Type().matrix(), I);
|
|
|
|
SE2Type se2 = se2_vec_.front();
|
|
Point translation = se2.translation();
|
|
SO2Type so2 = se2.so2();
|
|
|
|
SOPHUS_TEST_APPROX(passed, SE2Type(so2.log(), translation).matrix(),
|
|
se2.matrix(), Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed, SE2Type(so2, translation).matrix(), se2.matrix(),
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed, SE2Type(so2.matrix(), translation).matrix(),
|
|
se2.matrix(), Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed,
|
|
SE2Type(so2.unit_complex(), translation).matrix(),
|
|
se2.matrix(), Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed, SE2Type(se2.matrix()).matrix(), se2.matrix(),
|
|
Constants<Scalar>::epsilon());
|
|
|
|
return passed;
|
|
}
|
|
|
|
template <class S = Scalar>
|
|
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
|
|
bool passed = true;
|
|
for (int i = 0; i < 100; ++i) {
|
|
Matrix3<Scalar> T = Matrix3<Scalar>::Random();
|
|
SE2Type se2 = SE2Type::fitToSE2(T);
|
|
SE2Type se2_2 = SE2Type::fitToSE2(se2.matrix());
|
|
|
|
SOPHUS_TEST_APPROX(passed, se2.matrix(), se2_2.matrix(),
|
|
Constants<Scalar>::epsilon());
|
|
}
|
|
return passed;
|
|
}
|
|
|
|
template <class S = Scalar>
|
|
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
|
|
return true;
|
|
}
|
|
|
|
std::vector<SE2Type, Eigen::aligned_allocator<SE2Type>> se2_vec_;
|
|
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
|
|
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
|
|
};
|
|
|
|
int test_se2() {
|
|
using std::cerr;
|
|
using std::endl;
|
|
|
|
cerr << "Test SE2" << endl << endl;
|
|
cerr << "Double tests: " << endl;
|
|
Tests<double>().runAll();
|
|
cerr << "Float tests: " << endl;
|
|
Tests<float>().runAll();
|
|
|
|
#if SOPHUS_CERES
|
|
cerr << "ceres::Jet<double, 3> tests: " << endl;
|
|
Tests<ceres::Jet<double, 3>>().runAll();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
} // namespace Sophus
|
|
|
|
int main() { return Sophus::test_se2(); }
|