453 lines
16 KiB
C++
453 lines
16 KiB
C++
/**
|
|
* This file is part of ORB-SLAM3
|
|
*
|
|
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
|
|
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
|
|
*
|
|
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
|
|
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <chrono>
|
|
#include <ctime>
|
|
#include <sstream>
|
|
|
|
#include <condition_variable>
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
|
|
#include <librealsense2/rs.hpp>
|
|
#include "librealsense2/rsutil.h"
|
|
|
|
#include <System.h>
|
|
|
|
using namespace std;
|
|
|
|
bool b_continue_session;
|
|
|
|
void exit_loop_handler(int s){
|
|
cout << "Finishing session" << endl;
|
|
b_continue_session = false;
|
|
|
|
}
|
|
|
|
void interpolateData(const std::vector<double> &vBase_times,
|
|
std::vector<rs2_vector> &vInterp_data, std::vector<double> &vInterp_times,
|
|
const rs2_vector &prev_data, const double &prev_time);
|
|
|
|
rs2_vector interpolateMeasure(const double target_time,
|
|
const rs2_vector current_data, const double current_time,
|
|
const rs2_vector prev_data, const double prev_time);
|
|
|
|
static rs2_option get_sensor_option(const rs2::sensor& sensor)
|
|
{
|
|
// Sensors usually have several options to control their properties
|
|
// such as Exposure, Brightness etc.
|
|
|
|
std::cout << "Sensor supports the following options:\n" << std::endl;
|
|
|
|
// The following loop shows how to iterate over all available options
|
|
// Starting from 0 until RS2_OPTION_COUNT (exclusive)
|
|
for (int i = 0; i < static_cast<int>(RS2_OPTION_COUNT); i++)
|
|
{
|
|
rs2_option option_type = static_cast<rs2_option>(i);
|
|
//SDK enum types can be streamed to get a string that represents them
|
|
std::cout << " " << i << ": " << option_type;
|
|
|
|
// To control an option, use the following api:
|
|
|
|
// First, verify that the sensor actually supports this option
|
|
if (sensor.supports(option_type))
|
|
{
|
|
std::cout << std::endl;
|
|
|
|
// Get a human readable description of the option
|
|
const char* description = sensor.get_option_description(option_type);
|
|
std::cout << " Description : " << description << std::endl;
|
|
|
|
// Get the current value of the option
|
|
float current_value = sensor.get_option(option_type);
|
|
std::cout << " Current Value : " << current_value << std::endl;
|
|
|
|
//To change the value of an option, please follow the change_sensor_option() function
|
|
}
|
|
else
|
|
{
|
|
std::cout << " is not supported" << std::endl;
|
|
}
|
|
}
|
|
|
|
uint32_t selected_sensor_option = 0;
|
|
return static_cast<rs2_option>(selected_sensor_option);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
if (argc < 3 || argc > 4) {
|
|
cerr << endl
|
|
<< "Usage: ./mono_inertial_realsense_D435i path_to_vocabulary path_to_settings (trajectory_file_name)"
|
|
<< endl;
|
|
return 1;
|
|
}
|
|
|
|
string file_name;
|
|
|
|
if (argc == 4) {
|
|
file_name = string(argv[argc - 1]);
|
|
}
|
|
|
|
struct sigaction sigIntHandler;
|
|
|
|
sigIntHandler.sa_handler = exit_loop_handler;
|
|
sigemptyset(&sigIntHandler.sa_mask);
|
|
sigIntHandler.sa_flags = 0;
|
|
|
|
sigaction(SIGINT, &sigIntHandler, NULL);
|
|
b_continue_session = true;
|
|
|
|
double offset = 0; // ms
|
|
|
|
rs2::context ctx;
|
|
rs2::device_list devices = ctx.query_devices();
|
|
rs2::device selected_device;
|
|
if (devices.size() == 0)
|
|
{
|
|
std::cerr << "No device connected, please connect a RealSense device" << std::endl;
|
|
return 0;
|
|
}
|
|
else
|
|
selected_device = devices[0];
|
|
|
|
std::vector<rs2::sensor> sensors = selected_device.query_sensors();
|
|
int index = 0;
|
|
// We can now iterate the sensors and print their names
|
|
for (rs2::sensor sensor : sensors)
|
|
if (sensor.supports(RS2_CAMERA_INFO_NAME)) {
|
|
++index;
|
|
if (index == 1) {
|
|
sensor.set_option(RS2_OPTION_ENABLE_AUTO_EXPOSURE, 1);
|
|
sensor.set_option(RS2_OPTION_AUTO_EXPOSURE_LIMIT,5000);
|
|
sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 0); // switch off emitter
|
|
}
|
|
// std::cout << " " << index << " : " << sensor.get_info(RS2_CAMERA_INFO_NAME) << std::endl;
|
|
get_sensor_option(sensor);
|
|
if (index == 2){
|
|
// RGB camera (not used here...)
|
|
sensor.set_option(RS2_OPTION_EXPOSURE,100.f);
|
|
}
|
|
|
|
if (index == 3){
|
|
sensor.set_option(RS2_OPTION_ENABLE_MOTION_CORRECTION,0);
|
|
}
|
|
|
|
}
|
|
|
|
// Declare RealSense pipeline, encapsulating the actual device and sensors
|
|
rs2::pipeline pipe;
|
|
// Create a configuration for configuring the pipeline with a non default profile
|
|
rs2::config cfg;
|
|
cfg.enable_stream(RS2_STREAM_INFRARED, 1, 640, 480, RS2_FORMAT_Y8, 30);
|
|
cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F);
|
|
cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F);
|
|
|
|
// IMU callback
|
|
std::mutex imu_mutex;
|
|
std::condition_variable cond_image_rec;
|
|
|
|
vector<double> v_accel_timestamp;
|
|
vector<rs2_vector> v_accel_data;
|
|
vector<double> v_gyro_timestamp;
|
|
vector<rs2_vector> v_gyro_data;
|
|
|
|
double prev_accel_timestamp = 0;
|
|
rs2_vector prev_accel_data;
|
|
double current_accel_timestamp = 0;
|
|
rs2_vector current_accel_data;
|
|
vector<double> v_accel_timestamp_sync;
|
|
vector<rs2_vector> v_accel_data_sync;
|
|
|
|
cv::Mat imCV;
|
|
int width_img, height_img;
|
|
double timestamp_image = -1.0;
|
|
bool image_ready = false;
|
|
int count_im_buffer = 0; // count dropped frames
|
|
|
|
auto imu_callback = [&](const rs2::frame& frame)
|
|
{
|
|
std::unique_lock<std::mutex> lock(imu_mutex);
|
|
|
|
if(rs2::frameset fs = frame.as<rs2::frameset>())
|
|
{
|
|
count_im_buffer++;
|
|
|
|
double new_timestamp_image = fs.get_timestamp()*1e-3;
|
|
if(abs(timestamp_image-new_timestamp_image)<0.001){
|
|
// cout << "Two frames with the same timeStamp!!!\n";
|
|
count_im_buffer--;
|
|
return;
|
|
}
|
|
|
|
rs2::video_frame color_frame = fs.get_infrared_frame();
|
|
imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame.get_data()), cv::Mat::AUTO_STEP);
|
|
|
|
timestamp_image = fs.get_timestamp()*1e-3;
|
|
image_ready = true;
|
|
|
|
while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
|
|
{
|
|
|
|
int index = v_accel_timestamp_sync.size();
|
|
double target_time = v_gyro_timestamp[index];
|
|
|
|
v_accel_data_sync.push_back(current_accel_data);
|
|
v_accel_timestamp_sync.push_back(target_time);
|
|
}
|
|
|
|
lock.unlock();
|
|
cond_image_rec.notify_all();
|
|
}
|
|
else if (rs2::motion_frame m_frame = frame.as<rs2::motion_frame>())
|
|
{
|
|
if (m_frame.get_profile().stream_name() == "Gyro")
|
|
{
|
|
// It runs at 200Hz
|
|
v_gyro_data.push_back(m_frame.get_motion_data());
|
|
v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3);
|
|
//rs2_vector gyro_sample = m_frame.get_motion_data();
|
|
//std::cout << "Gyro:" << gyro_sample.x << ", " << gyro_sample.y << ", " << gyro_sample.z << std::endl;
|
|
}
|
|
else if (m_frame.get_profile().stream_name() == "Accel")
|
|
{
|
|
// It runs at 60Hz
|
|
prev_accel_timestamp = current_accel_timestamp;
|
|
prev_accel_data = current_accel_data;
|
|
|
|
current_accel_data = m_frame.get_motion_data();
|
|
current_accel_timestamp = (m_frame.get_timestamp()+offset)*1e-3;
|
|
|
|
while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
|
|
{
|
|
int index = v_accel_timestamp_sync.size();
|
|
double target_time = v_gyro_timestamp[index];
|
|
|
|
rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp,
|
|
prev_accel_data, prev_accel_timestamp);
|
|
|
|
v_accel_data_sync.push_back(interp_data);
|
|
v_accel_timestamp_sync.push_back(target_time);
|
|
|
|
}
|
|
// std::cout << "Accel:" << current_accel_data.x << ", " << current_accel_data.y << ", " << current_accel_data.z << std::endl;
|
|
}
|
|
}
|
|
};
|
|
|
|
rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback);
|
|
|
|
vector<ORB_SLAM3::IMU::Point> vImuMeas;
|
|
rs2::stream_profile cam_stream = pipe_profile.get_stream(RS2_STREAM_INFRARED, 1);
|
|
|
|
|
|
rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO);
|
|
float* Rbc = cam_stream.get_extrinsics_to(imu_stream).rotation;
|
|
float* tbc = cam_stream.get_extrinsics_to(imu_stream).translation;
|
|
std::cout << "Tbc = " << std::endl;
|
|
for(int i = 0; i<3; i++){
|
|
for(int j = 0; j<3; j++)
|
|
std::cout << Rbc[i*3 + j] << ", ";
|
|
std::cout << tbc[i] << "\n";
|
|
}
|
|
|
|
|
|
rs2_intrinsics intrinsics_cam = cam_stream.as<rs2::video_stream_profile>().get_intrinsics();
|
|
width_img = intrinsics_cam.width;
|
|
height_img = intrinsics_cam.height;
|
|
std::cout << " fx = " << intrinsics_cam.fx << std::endl;
|
|
std::cout << " fy = " << intrinsics_cam.fy << std::endl;
|
|
std::cout << " cx = " << intrinsics_cam.ppx << std::endl;
|
|
std::cout << " cy = " << intrinsics_cam.ppy << std::endl;
|
|
std::cout << " height = " << intrinsics_cam.height << std::endl;
|
|
std::cout << " width = " << intrinsics_cam.width << std::endl;
|
|
std::cout << " Coeff = " << intrinsics_cam.coeffs[0] << ", " << intrinsics_cam.coeffs[1] << ", " <<
|
|
intrinsics_cam.coeffs[2] << ", " << intrinsics_cam.coeffs[3] << ", " << intrinsics_cam.coeffs[4] << ", " << std::endl;
|
|
std::cout << " Model = " << intrinsics_cam.model << std::endl;
|
|
|
|
|
|
// Create SLAM system. It initializes all system threads and gets ready to process frames.
|
|
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_MONOCULAR, true, 0, file_name);
|
|
float imageScale = SLAM.GetImageScale();
|
|
|
|
double timestamp;
|
|
cv::Mat im;
|
|
|
|
// Clear IMU vectors
|
|
v_gyro_data.clear();
|
|
v_gyro_timestamp.clear();
|
|
v_accel_data_sync.clear();
|
|
v_accel_timestamp_sync.clear();
|
|
|
|
double t_resize = 0.f;
|
|
double t_track = 0.f;
|
|
|
|
while (!SLAM.isShutDown())
|
|
{
|
|
std::vector<rs2_vector> vGyro;
|
|
std::vector<double> vGyro_times;
|
|
std::vector<rs2_vector> vAccel;
|
|
std::vector<double> vAccel_times;
|
|
|
|
{
|
|
std::unique_lock<std::mutex> lk(imu_mutex);
|
|
if(!image_ready)
|
|
cond_image_rec.wait(lk);
|
|
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point time_Start_Process = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point time_Start_Process = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
|
|
if(count_im_buffer>1)
|
|
cout << count_im_buffer -1 << " dropped frs\n";
|
|
count_im_buffer = 0;
|
|
|
|
while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
|
|
{
|
|
int index = v_accel_timestamp_sync.size();
|
|
double target_time = v_gyro_timestamp[index];
|
|
|
|
rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp);
|
|
|
|
v_accel_data_sync.push_back(interp_data);
|
|
// v_accel_data_sync.push_back(current_accel_data); // 0 interpolation
|
|
v_accel_timestamp_sync.push_back(target_time);
|
|
}
|
|
|
|
// Copy the IMU data
|
|
vGyro = v_gyro_data;
|
|
vGyro_times = v_gyro_timestamp;
|
|
vAccel = v_accel_data_sync;
|
|
vAccel_times = v_accel_timestamp_sync;
|
|
timestamp = timestamp_image;
|
|
im = imCV.clone();
|
|
|
|
// Clear IMU vectors
|
|
v_gyro_data.clear();
|
|
v_gyro_timestamp.clear();
|
|
v_accel_data_sync.clear();
|
|
v_accel_timestamp_sync.clear();
|
|
|
|
image_ready = false;
|
|
}
|
|
|
|
|
|
for(int i=0; i<vGyro.size(); ++i)
|
|
{
|
|
ORB_SLAM3::IMU::Point lastPoint(vAccel[i].x, vAccel[i].y, vAccel[i].z,
|
|
vGyro[i].x, vGyro[i].y, vGyro[i].z,
|
|
vGyro_times[i]);
|
|
vImuMeas.push_back(lastPoint);
|
|
}
|
|
|
|
if(imageScale != 1.f)
|
|
{
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_Start_Resize = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_Start_Resize = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
#endif
|
|
int width = im.cols * imageScale;
|
|
int height = im.rows * imageScale;
|
|
cv::resize(im, im, cv::Size(width, height));
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_End_Resize = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_End_Resize = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
t_resize = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Resize - t_Start_Resize).count();
|
|
SLAM.InsertResizeTime(t_resize);
|
|
#endif
|
|
}
|
|
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_Start_Track = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_Start_Track = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
#endif
|
|
// Pass the image to the SLAM system
|
|
SLAM.TrackMonocular(im, timestamp, vImuMeas);
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_End_Track = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_End_Track = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
t_track = t_resize + std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Track - t_Start_Track).count();
|
|
SLAM.InsertTrackTime(t_track);
|
|
#endif
|
|
|
|
|
|
|
|
// Clear the previous IMU measurements to load the new ones
|
|
vImuMeas.clear();
|
|
}
|
|
cout << "System shutdown!\n";
|
|
}
|
|
|
|
rs2_vector interpolateMeasure(const double target_time,
|
|
const rs2_vector current_data, const double current_time,
|
|
const rs2_vector prev_data, const double prev_time)
|
|
{
|
|
|
|
// If there are not previous information, the current data is propagated
|
|
if(prev_time == 0)
|
|
{
|
|
return current_data;
|
|
}
|
|
|
|
rs2_vector increment;
|
|
rs2_vector value_interp;
|
|
|
|
if(target_time > current_time) {
|
|
value_interp = current_data;
|
|
}
|
|
else if(target_time > prev_time)
|
|
{
|
|
increment.x = current_data.x - prev_data.x;
|
|
increment.y = current_data.y - prev_data.y;
|
|
increment.z = current_data.z - prev_data.z;
|
|
|
|
double factor = (target_time - prev_time) / (current_time - prev_time);
|
|
|
|
value_interp.x = prev_data.x + increment.x * factor;
|
|
value_interp.y = prev_data.y + increment.y * factor;
|
|
value_interp.z = prev_data.z + increment.z * factor;
|
|
|
|
// zero interpolation
|
|
value_interp = current_data;
|
|
}
|
|
else {
|
|
value_interp = prev_data;
|
|
}
|
|
|
|
return value_interp;
|
|
}
|