ORB-SLAM3/Examples/Monocular/mono_tum_vi.cc

258 lines
7.8 KiB
C++

/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include<iostream>
#include<algorithm>
#include<fstream>
#include<chrono>
#include<iomanip>
#include <unistd.h>
#include<opencv2/core/core.hpp>
#include"System.h"
#include "Converter.h"
using namespace std;
void LoadImages(const string &strImagePath, const string &strPathTimes,
vector<string> &vstrImages, vector<double> &vTimeStamps);
double ttrack_tot = 0;
int main(int argc, char **argv)
{
const int num_seq = (argc-3)/2;
cout << "num_seq = " << num_seq << endl;
bool bFileName= (((argc-3) % 2) == 1);
string file_name;
if (bFileName)
{
file_name = string(argv[argc-1]);
cout << "file name: " << file_name << endl;
}
if(argc < 4)
{
cerr << endl << "Usage: ./mono_tum_vi path_to_vocabulary path_to_settings path_to_image_folder_1 path_to_times_file_1 (path_to_image_folder_2 path_to_times_file_2 ... path_to_image_folder_N path_to_times_file_N) (trajectory_file_name)" << endl;
return 1;
}
// Load all sequences:
int seq;
vector< vector<string> > vstrImageFilenames;
vector< vector<double> > vTimestampsCam;
vector<int> nImages;
vstrImageFilenames.resize(num_seq);
vTimestampsCam.resize(num_seq);
nImages.resize(num_seq);
int tot_images = 0;
for (seq = 0; seq<num_seq; seq++)
{
cout << "Loading images for sequence " << seq << "...";
LoadImages(string(argv[(2*seq)+3]), string(argv[(2*seq)+4]), vstrImageFilenames[seq], vTimestampsCam[seq]);
cout << "LOADED!" << endl;
nImages[seq] = vstrImageFilenames[seq].size();
tot_images += nImages[seq];
if((nImages[seq]<=0))
{
cerr << "ERROR: Failed to load images for sequence" << seq << endl;
return 1;
}
}
// Vector for tracking time statistics
vector<float> vTimesTrack;
vTimesTrack.resize(tot_images);
cout << endl << "-------" << endl;
cout.precision(17);
// Create SLAM system. It initializes all system threads and gets ready to process frames.
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::MONOCULAR,false, 0, file_name);
float imageScale = SLAM.GetImageScale();
double t_resize = 0.f;
double t_track = 0.f;
int proccIm = 0;
for (seq = 0; seq<num_seq; seq++)
{
// Main loop
cv::Mat im;
proccIm = 0;
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(3.0, cv::Size(8, 8));
for(int ni=0; ni<nImages[seq]; ni++, proccIm++)
{
// Read image from file
im = cv::imread(vstrImageFilenames[seq][ni],cv::IMREAD_GRAYSCALE); //,cv::IMREAD_GRAYSCALE);
if(imageScale != 1.f)
{
#ifdef REGISTER_TIMES
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t_Start_Resize = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t_Start_Resize = std::chrono::monotonic_clock::now();
#endif
#endif
int width = im.cols * imageScale;
int height = im.rows * imageScale;
cv::resize(im, im, cv::Size(width, height));
#ifdef REGISTER_TIMES
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t_End_Resize = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t_End_Resize = std::chrono::monotonic_clock::now();
#endif
t_resize = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Resize - t_Start_Resize).count();
SLAM.InsertResizeTime(t_resize);
#endif
}
// clahe
clahe->apply(im,im);
// cout << "mat type: " << im.type() << endl;
double tframe = vTimestampsCam[seq][ni];
if(im.empty())
{
cerr << endl << "Failed to load image at: "
<< vstrImageFilenames[seq][ni] << endl;
return 1;
}
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif
// Pass the image to the SLAM system
SLAM.TrackMonocular(im,tframe); // TODO change to monocular_inertial
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif
#ifdef REGISTER_TIMES
t_track = t_resize + std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t2 - t1).count();
SLAM.InsertTrackTime(t_track);
#endif
double ttrack= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
ttrack_tot += ttrack;
vTimesTrack[ni]=ttrack;
// Wait to load the next frame
double T=0;
if(ni<nImages[seq]-1)
T = vTimestampsCam[seq][ni+1]-tframe;
else if(ni>0)
T = tframe-vTimestampsCam[seq][ni-1];
if(ttrack<T)
usleep((T-ttrack)*1e6); // 1e6
}
if(seq < num_seq - 1)
{
cout << "Changing the dataset" << endl;
SLAM.ChangeDataset();
}
}
// cout << "ttrack_tot = " << ttrack_tot << std::endl;
// Stop all threads
SLAM.Shutdown();
// Tracking time statistics
// Save camera trajectory
if (bFileName)
{
const string kf_file = "kf_" + string(argv[argc-1]) + ".txt";
const string f_file = "f_" + string(argv[argc-1]) + ".txt";
SLAM.SaveTrajectoryEuRoC(f_file);
SLAM.SaveKeyFrameTrajectoryEuRoC(kf_file);
}
else
{
SLAM.SaveTrajectoryEuRoC("CameraTrajectory.txt");
SLAM.SaveKeyFrameTrajectoryEuRoC("KeyFrameTrajectory.txt");
}
sort(vTimesTrack.begin(),vTimesTrack.end());
float totaltime = 0;
for(int ni=0; ni<nImages[0]; ni++)
{
totaltime+=vTimesTrack[ni];
}
cout << "-------" << endl << endl;
cout << "median tracking time: " << vTimesTrack[nImages[0]/2] << endl;
cout << "mean tracking time: " << totaltime/proccIm << endl;
return 0;
}
void LoadImages(const string &strImagePath, const string &strPathTimes,
vector<string> &vstrImages, vector<double> &vTimeStamps)
{
ifstream fTimes;
fTimes.open(strPathTimes.c_str());
vTimeStamps.reserve(5000);
vstrImages.reserve(5000);
while(!fTimes.eof())
{
string s;
getline(fTimes,s);
if(!s.empty())
{
if (s[0] == '#')
continue;
int pos = s.find(' ');
string item = s.substr(0, pos);
vstrImages.push_back(strImagePath + "/" + item + ".png");
double t = stod(item);
vTimeStamps.push_back(t/1e9);
}
}
}