359 lines
13 KiB
C++
359 lines
13 KiB
C++
/**
|
|
* This file is part of ORB-SLAM3
|
|
*
|
|
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
|
|
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
|
|
*
|
|
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
|
|
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <chrono>
|
|
#include <ctime>
|
|
#include <sstream>
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
|
|
#include <librealsense2/rs.hpp>
|
|
|
|
#include <System.h>
|
|
#include <condition_variable>
|
|
#include "ImuTypes.h"
|
|
|
|
using namespace std;
|
|
|
|
bool b_continue_session;
|
|
|
|
|
|
|
|
void exit_loop_handler(int s){
|
|
cout << "Finishing session" << endl;
|
|
b_continue_session = false;
|
|
|
|
}
|
|
|
|
rs2_vector interpolateMeasure(const double target_time,
|
|
const rs2_vector current_data, const double current_time,
|
|
const rs2_vector prev_data, const double prev_time);
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
if (argc < 3 || argc > 4) {
|
|
cerr << endl
|
|
<< "Usage: ./stereo_inertial_realsense_t265 path_to_vocabulary path_to_settings (trajectory_file_name)"
|
|
<< endl;
|
|
return 1;
|
|
}
|
|
|
|
string file_name;
|
|
bool bFileName = false;
|
|
|
|
if (argc == 5) {
|
|
file_name = string(argv[argc - 1]);
|
|
bFileName = true;
|
|
}
|
|
|
|
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_STEREO, true, 0, file_name);
|
|
float imageScale = SLAM.GetImageScale();
|
|
|
|
struct sigaction sigIntHandler;
|
|
|
|
sigIntHandler.sa_handler = exit_loop_handler;
|
|
sigemptyset(&sigIntHandler.sa_mask);
|
|
sigIntHandler.sa_flags = 0;
|
|
|
|
sigaction(SIGINT, &sigIntHandler, NULL);
|
|
b_continue_session = true;
|
|
|
|
double offset = 0; // ms
|
|
|
|
// Declare RealSense pipeline, encapsulating the actual device and sensors
|
|
rs2::pipeline pipe;
|
|
// Create a configuration for configuring the pipeline with a non default profile
|
|
rs2::config cfg;
|
|
|
|
// Enable both image streams (for some reason realsense does not allow to enable just one)
|
|
cfg.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8,30);
|
|
cfg.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8,30);
|
|
|
|
// Add streams of gyro and accelerometer to configuration
|
|
cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F);
|
|
cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F);
|
|
|
|
std::mutex imu_mutex;
|
|
std::condition_variable cond_image_rec;
|
|
|
|
vector<double> v_accel_timestamp;
|
|
vector<rs2_vector> v_accel_data;
|
|
vector<double> v_gyro_timestamp;
|
|
vector<rs2_vector> v_gyro_data;
|
|
|
|
double prev_accel_timestamp = 0;
|
|
rs2_vector prev_accel_data;
|
|
double current_accel_timestamp = 0;
|
|
rs2_vector current_accel_data;
|
|
vector<double> v_accel_timestamp_sync;
|
|
vector<rs2_vector> v_accel_data_sync;
|
|
|
|
cv::Mat imCV,imCV_right;
|
|
int width_img = 848, height_img = 800;
|
|
double timestamp_image = -1.0;
|
|
bool image_ready = false;
|
|
int count_im_buffer = 0; // count dropped frames
|
|
|
|
auto imu_callback = [&](const rs2::frame& frame){
|
|
std::unique_lock<std::mutex> lock(imu_mutex);
|
|
|
|
if(rs2::frameset fs = frame.as<rs2::frameset>()){
|
|
count_im_buffer++;
|
|
|
|
double new_timestamp_image = fs.get_timestamp()*1e-3;
|
|
if(abs(timestamp_image-new_timestamp_image)<0.001){
|
|
// cout << "Two frames with the same timeStamp!!!\n";
|
|
count_im_buffer--;
|
|
return;
|
|
}
|
|
|
|
rs2::video_frame color_frame = fs.get_fisheye_frame(1);
|
|
rs2::video_frame color_frame_right = fs.get_fisheye_frame(2);
|
|
imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame.get_data()), cv::Mat::AUTO_STEP);
|
|
imCV_right = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame_right.get_data()), cv::Mat::AUTO_STEP);
|
|
|
|
timestamp_image = new_timestamp_image;
|
|
double test = fs.get_timestamp()*1e-3;
|
|
|
|
image_ready = true;
|
|
|
|
while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()){
|
|
|
|
int index = v_accel_timestamp_sync.size();
|
|
double target_time = v_gyro_timestamp[index];
|
|
|
|
rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp);
|
|
v_accel_data_sync.push_back(interp_data);
|
|
v_accel_timestamp_sync.push_back(target_time);
|
|
}
|
|
|
|
lock.unlock();
|
|
cond_image_rec.notify_all();
|
|
}
|
|
else if (rs2::motion_frame m_frame = frame.as<rs2::motion_frame>()){
|
|
if (m_frame.get_profile().stream_name() == "Gyro"){
|
|
// It runs at 200Hz
|
|
v_gyro_data.push_back(m_frame.get_motion_data());
|
|
v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3);
|
|
}
|
|
else if (m_frame.get_profile().stream_name() == "Accel"){
|
|
// It runs at 60Hz
|
|
prev_accel_timestamp = current_accel_timestamp;
|
|
prev_accel_data = current_accel_data;
|
|
|
|
current_accel_data = m_frame.get_motion_data();
|
|
current_accel_timestamp = (m_frame.get_timestamp()+offset)*1e-3;
|
|
|
|
while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
|
|
{
|
|
int index = v_accel_timestamp_sync.size();
|
|
double target_time = v_gyro_timestamp[index];
|
|
|
|
rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp,
|
|
prev_accel_data, prev_accel_timestamp);
|
|
|
|
v_accel_data_sync.push_back(interp_data);
|
|
v_accel_timestamp_sync.push_back(target_time);
|
|
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback);
|
|
|
|
rs2::stream_profile cam_stream = pipe_profile.get_stream(RS2_STREAM_FISHEYE, 1);
|
|
rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO);
|
|
float* Rbc = cam_stream.get_extrinsics_to(imu_stream).rotation;
|
|
float* tbc = cam_stream.get_extrinsics_to(imu_stream).translation;
|
|
std::cout << "Tbc = " << std::endl;
|
|
for(int i = 0; i<3; i++){
|
|
for(int j = 0; j<3; j++)
|
|
std::cout << Rbc[i*3 + j] << ", ";
|
|
std::cout << tbc[i] << "\n";
|
|
}
|
|
|
|
// Create SLAM system. It initializes all system threads and gets ready to process frames.
|
|
vector<ORB_SLAM3::IMU::Point> vImuMeas;
|
|
|
|
double timestamp;
|
|
cv::Mat im,imright;
|
|
|
|
// Clear IMU vectors
|
|
v_gyro_data.clear();
|
|
v_gyro_timestamp.clear();
|
|
v_accel_data_sync.clear();
|
|
v_accel_timestamp_sync.clear();
|
|
|
|
double t_resize = 0.f;
|
|
double t_track = 0.f;
|
|
|
|
cv::Mat im_left, im_right;
|
|
|
|
while (!SLAM.isShutDown()){
|
|
std::vector<rs2_vector> vGyro;
|
|
std::vector<double> vGyro_times;
|
|
std::vector<rs2_vector> vAccel;
|
|
std::vector<double> vAccel_times;
|
|
|
|
{
|
|
std::unique_lock<std::mutex> lk(imu_mutex);
|
|
while(!image_ready)
|
|
cond_image_rec.wait(lk);
|
|
|
|
if(count_im_buffer>1)
|
|
cout << count_im_buffer -1 << " dropped frames\n";
|
|
count_im_buffer = 0;
|
|
|
|
while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()){
|
|
int index = v_accel_timestamp_sync.size();
|
|
double target_time = v_gyro_timestamp[index];
|
|
|
|
rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp);
|
|
|
|
v_accel_data_sync.push_back(interp_data);
|
|
v_accel_timestamp_sync.push_back(target_time);
|
|
}
|
|
|
|
if(imageScale == 1.f)
|
|
{
|
|
im_left = imCV.clone();
|
|
im_right = imCV_right.clone();
|
|
}
|
|
else
|
|
{
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_Start_Resize = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_Start_Resize = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
#endif
|
|
int width = imCV.cols * imageScale;
|
|
int height = imCV.rows * imageScale;
|
|
cv::resize(imCV, im_left, cv::Size(width, height));
|
|
cv::resize(imCV_right, im_right, cv::Size(width, height));
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_End_Resize = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_End_Resize = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
t_resize = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Resize - t_Start_Resize).count();
|
|
SLAM.InsertResizeTime(t_resize);
|
|
#endif
|
|
}
|
|
|
|
// Copy the IMU data
|
|
vGyro = v_gyro_data;
|
|
vGyro_times = v_gyro_timestamp;
|
|
vAccel = v_accel_data_sync;
|
|
vAccel_times = v_accel_timestamp_sync;
|
|
timestamp = timestamp_image;
|
|
|
|
// Clear IMU vectors
|
|
v_gyro_data.clear();
|
|
v_gyro_timestamp.clear();
|
|
v_accel_data_sync.clear();
|
|
v_accel_timestamp_sync.clear();
|
|
|
|
image_ready = false;
|
|
}
|
|
|
|
|
|
for(int i=0; i<vGyro.size(); ++i){
|
|
ORB_SLAM3::IMU::Point lastPoint(vAccel[i].x, vAccel[i].y, vAccel[i].z,
|
|
vGyro[i].x, vGyro[i].y, vGyro[i].z,
|
|
vGyro_times[i]);
|
|
vImuMeas.push_back(lastPoint);
|
|
if(isnan(vAccel[i].x) || isnan(vAccel[i].y) || isnan(vAccel[i].z) ||
|
|
isnan(vGyro[i].x) || isnan(vGyro[i].y) || isnan(vGyro[i].z) ||
|
|
isnan(vGyro_times[i])){
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_Start_Track = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_Start_Track = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
#endif
|
|
// Pass the image to the SLAM system
|
|
SLAM.TrackStereo(im_left, im_right, timestamp, vImuMeas);
|
|
#ifdef REGISTER_TIMES
|
|
#ifdef COMPILEDWITHC11
|
|
std::chrono::steady_clock::time_point t_End_Track = std::chrono::steady_clock::now();
|
|
#else
|
|
std::chrono::monotonic_clock::time_point t_End_Track = std::chrono::monotonic_clock::now();
|
|
#endif
|
|
t_track = t_resize + std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Track - t_Start_Track).count();
|
|
SLAM.InsertTrackTime(t_track);
|
|
#endif
|
|
|
|
// Clear the previous IMU measurements to load the new ones
|
|
vImuMeas.clear();
|
|
}
|
|
|
|
SLAM.Shutdown();
|
|
|
|
return 0;
|
|
}
|
|
|
|
rs2_vector interpolateMeasure(const double target_time,
|
|
const rs2_vector current_data, const double current_time,
|
|
const rs2_vector prev_data, const double prev_time){
|
|
|
|
// If there are not previous information, the current data is propagated
|
|
if(prev_time == 0){
|
|
return current_data;
|
|
}
|
|
|
|
rs2_vector increment;
|
|
rs2_vector value_interp;
|
|
|
|
if(target_time > current_time) {
|
|
value_interp = current_data;
|
|
}
|
|
else if(target_time > prev_time){
|
|
increment.x = current_data.x - prev_data.x;
|
|
increment.y = current_data.y - prev_data.y;
|
|
increment.z = current_data.z - prev_data.z;
|
|
|
|
double factor = (target_time - prev_time) / (current_time - prev_time);
|
|
|
|
value_interp.x = prev_data.x + increment.x * factor;
|
|
value_interp.y = prev_data.y + increment.y * factor;
|
|
value_interp.z = prev_data.z + increment.z * factor;
|
|
|
|
// zero interpolation
|
|
value_interp = current_data;
|
|
}
|
|
else {
|
|
value_interp = prev_data;
|
|
}
|
|
|
|
return value_interp;
|
|
}
|