ORB-SLAM3/Thirdparty/Sophus/test/core/test_se3.cpp

268 lines
10 KiB
C++

#include <iostream>
#include <sophus/se3.hpp>
#include "tests.hpp"
// Explicit instantiate all class templates so that all member methods
// get compiled and for code coverage analysis.
namespace Eigen {
template class Map<Sophus::SE3<double>>;
template class Map<Sophus::SE3<double> const>;
} // namespace Eigen
namespace Sophus {
template class SE3<double, Eigen::AutoAlign>;
template class SE3<float, Eigen::DontAlign>;
#if SOPHUS_CERES
template class SE3<ceres::Jet<double, 3>>;
#endif
template <class Scalar>
class Tests {
public:
using SE3Type = SE3<Scalar>;
using SO3Type = SO3<Scalar>;
using Point = typename SE3<Scalar>::Point;
using Tangent = typename SE3<Scalar>::Tangent;
Scalar const kPi = Constants<Scalar>::pi();
Tests() {
se3_vec_ = getTestSE3s<Scalar>();
Tangent tmp;
tmp << Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(1), Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(1), Scalar(0), Scalar(1), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(-5), Scalar(10), Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(-1), Scalar(1), Scalar(0), Scalar(0), Scalar(0), Scalar(1);
tangent_vec_.push_back(tmp);
tmp << Scalar(20), Scalar(-1), Scalar(0), Scalar(-1), Scalar(1), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(30), Scalar(5), Scalar(-1), Scalar(20), Scalar(-1), Scalar(0);
tangent_vec_.push_back(tmp);
point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4)));
point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5)));
}
void runAll() {
bool passed = testLieProperties();
passed &= testRawDataAcces();
passed &= testMutatingAccessors();
passed &= testConstructors();
passed &= testFit();
processTestResult(passed);
}
private:
bool testLieProperties() {
LieGroupTests<SE3Type> tests(se3_vec_, tangent_vec_, point_vec_);
return tests.doAllTestsPass();
}
bool testRawDataAcces() {
bool passed = true;
Eigen::Matrix<Scalar, 7, 1> raw;
raw << Scalar(0), Scalar(1), Scalar(0), Scalar(0), Scalar(1), Scalar(3),
Scalar(2);
Eigen::Map<SE3Type const> map_of_const_se3(raw.data());
SOPHUS_TEST_APPROX(
passed, map_of_const_se3.unit_quaternion().coeffs().eval(),
raw.template head<4>().eval(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, map_of_const_se3.translation().eval(),
raw.template tail<3>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(
passed, map_of_const_se3.unit_quaternion().coeffs().data(), raw.data());
SOPHUS_TEST_EQUAL(passed, map_of_const_se3.translation().data(),
raw.data() + 4);
Eigen::Map<SE3Type const> const_shallow_copy = map_of_const_se3;
SOPHUS_TEST_EQUAL(passed,
const_shallow_copy.unit_quaternion().coeffs().eval(),
map_of_const_se3.unit_quaternion().coeffs().eval());
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.translation().eval(),
map_of_const_se3.translation().eval());
Eigen::Matrix<Scalar, 7, 1> raw2;
raw2 << Scalar(1), Scalar(0), Scalar(0), Scalar(0), Scalar(3), Scalar(2),
Scalar(1);
Eigen::Map<SE3Type> map_of_se3(raw.data());
Eigen::Quaternion<Scalar> quat;
quat.coeffs() = raw2.template head<4>();
map_of_se3.setQuaternion(quat);
map_of_se3.translation() = raw2.template tail<3>();
SOPHUS_TEST_APPROX(passed, map_of_se3.unit_quaternion().coeffs().eval(),
raw2.template head<4>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, map_of_se3.translation().eval(),
raw2.template tail<3>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_se3.unit_quaternion().coeffs().data(),
raw.data());
SOPHUS_TEST_EQUAL(passed, map_of_se3.translation().data(), raw.data() + 4);
SOPHUS_TEST_NEQ(passed, map_of_se3.unit_quaternion().coeffs().data(),
quat.coeffs().data());
Eigen::Map<SE3Type> shallow_copy = map_of_se3;
SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_quaternion().coeffs().eval(),
map_of_se3.unit_quaternion().coeffs().eval());
SOPHUS_TEST_EQUAL(passed, shallow_copy.translation().eval(),
map_of_se3.translation().eval());
Eigen::Map<SE3Type> const const_map_of_se3 = map_of_se3;
SOPHUS_TEST_EQUAL(passed,
const_map_of_se3.unit_quaternion().coeffs().eval(),
map_of_se3.unit_quaternion().coeffs().eval());
SOPHUS_TEST_EQUAL(passed, const_map_of_se3.translation().eval(),
map_of_se3.translation().eval());
SE3Type const const_se3(quat, raw2.template tail<3>().eval());
for (int i = 0; i < 7; ++i) {
SOPHUS_TEST_EQUAL(passed, const_se3.data()[i], raw2.data()[i]);
}
SE3Type se3(quat, raw2.template tail<3>().eval());
for (int i = 0; i < 7; ++i) {
SOPHUS_TEST_EQUAL(passed, se3.data()[i], raw2.data()[i]);
}
for (int i = 0; i < 7; ++i) {
SOPHUS_TEST_EQUAL(passed, se3.data()[i], raw.data()[i]);
}
SE3Type trans = SE3Type::transX(Scalar(0.2));
SOPHUS_TEST_APPROX(passed, trans.translation().x(), Scalar(0.2),
Constants<Scalar>::epsilon());
trans = SE3Type::transY(Scalar(0.7));
SOPHUS_TEST_APPROX(passed, trans.translation().y(), Scalar(0.7),
Constants<Scalar>::epsilon());
trans = SE3Type::transZ(Scalar(-0.2));
SOPHUS_TEST_APPROX(passed, trans.translation().z(), Scalar(-0.2),
Constants<Scalar>::epsilon());
Tangent t;
t << Scalar(0), Scalar(0), Scalar(0), Scalar(0.2), Scalar(0), Scalar(0);
SOPHUS_TEST_EQUAL(passed, SE3Type::rotX(Scalar(0.2)).matrix(),
SE3Type::exp(t).matrix());
t << Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(-0.2), Scalar(0);
SOPHUS_TEST_EQUAL(passed, SE3Type::rotY(Scalar(-0.2)).matrix(),
SE3Type::exp(t).matrix());
t << Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(0), Scalar(1.1);
SOPHUS_TEST_EQUAL(passed, SE3Type::rotZ(Scalar(1.1)).matrix(),
SE3Type::exp(t).matrix());
Eigen::Matrix<Scalar, 7, 1> data1, data2;
data1 << Scalar(0), Scalar(1), Scalar(0), Scalar(0),
Scalar(1), Scalar(2), Scalar(3);
data1 << Scalar(0), Scalar(0), Scalar(1), Scalar(0),
Scalar(3), Scalar(2), Scalar(1);
Eigen::Map<SE3Type> map1(data1.data()), map2(data2.data());
// map -> map assignment
map2 = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
// map -> type assignment
SE3Type copy;
copy = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
// type -> map assignment
copy = SE3Type::trans(Scalar(4), Scalar(5), Scalar(6))
* SE3Type::rotZ(Scalar(0.5));
map1 = copy;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
return passed;
}
bool testMutatingAccessors() {
bool passed = true;
SE3Type se3;
SO3Type R(SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))));
se3.setRotationMatrix(R.matrix());
SOPHUS_TEST_APPROX(passed, se3.rotationMatrix(), R.matrix(),
Constants<Scalar>::epsilon());
return passed;
}
bool testConstructors() {
bool passed = true;
Eigen::Matrix<Scalar, 4, 4> I = Eigen::Matrix<Scalar, 4, 4>::Identity();
SOPHUS_TEST_EQUAL(passed, SE3Type().matrix(), I);
SE3Type se3 = se3_vec_.front();
Point translation = se3.translation();
SO3Type so3 = se3.so3();
SOPHUS_TEST_APPROX(passed, SE3Type(so3, translation).matrix(), se3.matrix(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SE3Type(so3.matrix(), translation).matrix(),
se3.matrix(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed,
SE3Type(so3.unit_quaternion(), translation).matrix(),
se3.matrix(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SE3Type(se3.matrix()).matrix(), se3.matrix(),
Constants<Scalar>::epsilon());
return passed;
}
template <class S = Scalar>
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
bool passed = true;
for (int i = 0; i < 100; ++i) {
Matrix4<Scalar> T = Matrix4<Scalar>::Random();
SE3Type se3 = SE3Type::fitToSE3(T);
SE3Type se3_2 = SE3Type::fitToSE3(se3.matrix());
SOPHUS_TEST_APPROX(passed, se3.matrix(), se3_2.matrix(),
Constants<Scalar>::epsilon());
}
for (Scalar const angle :
{Scalar(0.0), Scalar(0.1), Scalar(0.3), Scalar(-0.7)}) {
SOPHUS_TEST_APPROX(passed, SE3Type::rotX(angle).angleX(), angle,
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SE3Type::rotY(angle).angleY(), angle,
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SE3Type::rotZ(angle).angleZ(), angle,
Constants<Scalar>::epsilon());
}
return passed;
}
template <class S = Scalar>
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
return true;
}
std::vector<SE3Type, Eigen::aligned_allocator<SE3Type>> se3_vec_;
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
};
int test_se3() {
using std::cerr;
using std::endl;
cerr << "Test SE3" << endl << endl;
cerr << "Double tests: " << endl;
Tests<double>().runAll();
cerr << "Float tests: " << endl;
Tests<float>().runAll();
#if SOPHUS_CERES
cerr << "ceres::Jet<double, 3> tests: " << endl;
Tests<ceres::Jet<double, 3>>().runAll();
#endif
return 0;
}
} // namespace Sophus
int main() { return Sophus::test_se3(); }