ORB-SLAM3/Thirdparty/Sophus/test/core/test_sim2.cpp

226 lines
8.3 KiB
C++

#include <iostream>
#include <unsupported/Eigen/MatrixFunctions>
#include <sophus/sim2.hpp>
#include "tests.hpp"
// Explicit instantiate all class templates so that all member methods
// get compiled and for code coverage analysis.
namespace Eigen {
template class Map<Sophus::Sim2<double>>;
template class Map<Sophus::Sim2<double> const>;
} // namespace Eigen
namespace Sophus {
template class Sim2<double, Eigen::AutoAlign>;
template class Sim2<float, Eigen::DontAlign>;
#if SOPHUS_CERES
template class Sim2<ceres::Jet<double, 3>>;
#endif
template <class Scalar>
class Tests {
public:
using Sim2Type = Sim2<Scalar>;
using RxSO2Type = RxSO2<Scalar>;
using Point = typename Sim2<Scalar>::Point;
using Vector2Type = Vector2<Scalar>;
using Tangent = typename Sim2<Scalar>::Tangent;
Scalar const kPi = Constants<Scalar>::pi();
Tests() {
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0.2, 1.)), Point(0, 0)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0.2, 1.1)), Point(10, 0)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0., 0.)), Point(0, 10)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0.00001, 0.)), Point(0, 0)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0.00001, 0.0000001)),
Point(1, -1.00000001)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0., 0.)), Point(0.01, 0)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(kPi, 0.9)), Point(4, 0)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0.2, 0)), Point(0, 0)) *
Sim2Type(RxSO2Type::exp(Vector2Type(kPi, 0)), Point(0, 0)) *
Sim2Type(RxSO2Type::exp(Vector2Type(-0.2, 0)), Point(0, 0)));
sim2_vec_.push_back(
Sim2Type(RxSO2Type::exp(Vector2Type(0.3, 0)), Point(2, -7)) *
Sim2Type(RxSO2Type::exp(Vector2Type(kPi, 0)), Point(0, 0)) *
Sim2Type(RxSO2Type::exp(Vector2Type(-0.3, 0)), Point(0, 6)));
Tangent tmp;
tmp << Scalar(0), Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(1), Scalar(0), Scalar(0), Scalar(0);
tangent_vec_.push_back(tmp);
tmp << Scalar(0), Scalar(1), Scalar(0), Scalar(0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(-1), Scalar(1), Scalar(1), Scalar(-0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(20), Scalar(-1), Scalar(0), Scalar(-0.1);
tangent_vec_.push_back(tmp);
tmp << Scalar(30), Scalar(5), Scalar(-1), Scalar(1.5);
tangent_vec_.push_back(tmp);
point_vec_.push_back(Point(Scalar(1), Scalar(4)));
point_vec_.push_back(Point(Scalar(1), Scalar(-3)));
}
void runAll() {
bool passed = testLieProperties();
passed &= testRawDataAcces();
passed &= testConstructors();
processTestResult(passed);
}
private:
bool testLieProperties() {
LieGroupTests<Sim2Type> tests(sim2_vec_, tangent_vec_, point_vec_);
return tests.doAllTestsPass();
}
bool testRawDataAcces() {
bool passed = true;
Eigen::Matrix<Scalar, 4, 1> raw;
raw << Scalar(0), Scalar(1), Scalar(3), Scalar(2);
Eigen::Map<Sim2Type const> map_of_const_sim2(raw.data());
SOPHUS_TEST_APPROX(passed, map_of_const_sim2.complex().eval(),
raw.template head<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, map_of_const_sim2.translation().eval(),
raw.template tail<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_const_sim2.complex().data(), raw.data());
SOPHUS_TEST_EQUAL(passed, map_of_const_sim2.translation().data(),
raw.data() + 2);
Eigen::Map<Sim2Type const> const_shallow_copy = map_of_const_sim2;
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.complex().eval(),
map_of_const_sim2.complex().eval());
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.translation().eval(),
map_of_const_sim2.translation().eval());
Eigen::Matrix<Scalar, 4, 1> raw2;
raw2 << Scalar(1), Scalar(0), Scalar(2), Scalar(1);
Eigen::Map<Sim2Type> map_of_sim2(raw.data());
Vector2<Scalar> z;
z = raw2.template head<2>();
map_of_sim2.setComplex(z);
map_of_sim2.translation() = raw2.template tail<2>();
SOPHUS_TEST_APPROX(passed, map_of_sim2.complex().eval(),
raw2.template head<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, map_of_sim2.translation().eval(),
raw2.template tail<2>().eval(),
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_sim2.complex().data(), raw.data());
SOPHUS_TEST_EQUAL(passed, map_of_sim2.translation().data(), raw.data() + 2);
SOPHUS_TEST_NEQ(passed, map_of_sim2.complex().data(), z.data());
Eigen::Map<Sim2Type> shallow_copy = map_of_sim2;
SOPHUS_TEST_EQUAL(passed, shallow_copy.complex().eval(),
map_of_sim2.complex().eval());
SOPHUS_TEST_EQUAL(passed, shallow_copy.translation().eval(),
map_of_sim2.translation().eval());
Eigen::Map<Sim2Type> const const_map_of_sim3 = map_of_sim2;
SOPHUS_TEST_EQUAL(passed, const_map_of_sim3.complex().eval(),
map_of_sim2.complex().eval());
SOPHUS_TEST_EQUAL(passed, const_map_of_sim3.translation().eval(),
map_of_sim2.translation().eval());
Sim2Type const const_sim2(z, raw2.template tail<2>().eval());
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, const_sim2.data()[i], raw2.data()[i]);
}
Sim2Type se3(z, raw2.template tail<2>().eval());
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, se3.data()[i], raw2.data()[i]);
}
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, se3.data()[i], raw.data()[i]);
}
Eigen::Matrix<Scalar, 4, 1> data1, data2;
data1 << Scalar(0), Scalar(2), Scalar(1), Scalar(2);
data2 << Scalar(2), Scalar(0), Scalar(2), Scalar(1);
Eigen::Map<Sim2Type> map1(data1.data()), map2(data2.data());
// map -> map assignment
map2 = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
// map -> type assignment
Sim2Type copy;
copy = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
// type -> map assignment
copy = Sim2Type(RxSO2Type::exp(Vector2Type(-1, 1)),
Point(Scalar(10), Scalar(0)));
map1 = copy;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
return passed;
}
bool testConstructors() {
bool passed = true;
Eigen::Matrix<Scalar, 3, 3> I = Eigen::Matrix<Scalar, 3, 3>::Identity();
SOPHUS_TEST_EQUAL(passed, Sim2Type().matrix(), I);
Sim2Type sim2 = sim2_vec_.front();
Point translation = sim2.translation();
RxSO2Type rxso2 = sim2.rxso2();
SOPHUS_TEST_APPROX(passed, Sim2Type(rxso2, translation).matrix(),
sim2.matrix(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, Sim2Type(rxso2.complex(), translation).matrix(),
sim2.matrix(), Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, Sim2Type(sim2.matrix()).matrix(), sim2.matrix(),
Constants<Scalar>::epsilon());
Scalar scale(1.2);
sim2.setScale(scale);
SOPHUS_TEST_APPROX(passed, scale, sim2.scale(),
Constants<Scalar>::epsilon(), "setScale");
sim2.setComplex(sim2_vec_[0].rxso2().complex());
SOPHUS_TEST_APPROX(passed, sim2_vec_[0].rxso2().complex(),
sim2_vec_[0].rxso2().complex(),
Constants<Scalar>::epsilon(), "setComplex");
return passed;
}
std::vector<Sim2Type, Eigen::aligned_allocator<Sim2Type>> sim2_vec_;
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
};
int test_sim3() {
using std::cerr;
using std::endl;
cerr << "Test Sim2" << endl << endl;
cerr << "Double tests: " << endl;
Tests<double>().runAll();
cerr << "Float tests: " << endl;
Tests<float>().runAll();
#if SOPHUS_CERES
cerr << "ceres::Jet<double, 3> tests: " << endl;
Tests<ceres::Jet<double, 3>>().runAll();
#endif
return 0;
}
} // namespace Sophus
int main() { return Sophus::test_sim3(); }