ORB-SLAM3/Thirdparty/Sophus/test/core/test_so2.cpp

191 lines
5.8 KiB
C++

#include <iostream>
#include <sophus/so2.hpp>
#include "tests.hpp"
// Explicit instantiate all class templates so that all member methods
// get compiled and for code coverage analysis.
namespace Eigen {
template class Map<Sophus::SO2<double>>;
template class Map<Sophus::SO2<double> const>;
} // namespace Eigen
namespace Sophus {
template class SO2<double, Eigen::AutoAlign>;
template class SO2<float, Eigen::DontAlign>;
#if SOPHUS_CERES
template class SO2<ceres::Jet<double, 3>>;
#endif
template <class Scalar>
class Tests {
public:
using SO2Type = SO2<Scalar>;
using Point = typename SO2<Scalar>::Point;
using Tangent = typename SO2<Scalar>::Tangent;
Scalar const kPi = Constants<Scalar>::pi();
Tests() {
so2_vec_.push_back(SO2Type::exp(Scalar(0.0)));
so2_vec_.push_back(SO2Type::exp(Scalar(0.2)));
so2_vec_.push_back(SO2Type::exp(Scalar(10.)));
so2_vec_.push_back(SO2Type::exp(Scalar(0.00001)));
so2_vec_.push_back(SO2Type::exp(kPi));
so2_vec_.push_back(SO2Type::exp(Scalar(0.2)) * SO2Type::exp(kPi) *
SO2Type::exp(Scalar(-0.2)));
so2_vec_.push_back(SO2Type::exp(Scalar(-0.3)) * SO2Type::exp(kPi) *
SO2Type::exp(Scalar(0.3)));
tangent_vec_.push_back(Tangent(Scalar(0)));
tangent_vec_.push_back(Tangent(Scalar(1)));
tangent_vec_.push_back(Tangent(Scalar(kPi / 2.)));
tangent_vec_.push_back(Tangent(Scalar(-1)));
tangent_vec_.push_back(Tangent(Scalar(20)));
tangent_vec_.push_back(Tangent(Scalar(kPi / 2. + 0.0001)));
point_vec_.push_back(Point(Scalar(1), Scalar(2)));
point_vec_.push_back(Point(Scalar(1), Scalar(-3)));
}
void runAll() {
bool passed = testLieProperties();
passed &= testUnity();
passed &= testRawDataAcces();
passed &= testConstructors();
passed &= testFit();
processTestResult(passed);
}
private:
bool testLieProperties() {
LieGroupTests<SO2Type> tests(so2_vec_, tangent_vec_, point_vec_);
return tests.doAllTestsPass();
}
bool testUnity() {
bool passed = true;
// Test that the complex number magnitude stays close to one.
SO2Type current_q;
for (std::size_t i = 0; i < 1000; ++i) {
for (SO2Type const& q : so2_vec_) {
current_q *= q;
}
}
SOPHUS_TEST_APPROX(passed, current_q.unit_complex().norm(), Scalar(1),
Constants<Scalar>::epsilon(), "Magnitude drift");
return passed;
}
bool testRawDataAcces() {
bool passed = true;
Vector2<Scalar> raw = {0, 1};
Eigen::Map<SO2Type const> map_of_const_so2(raw.data());
SOPHUS_TEST_APPROX(passed, map_of_const_so2.unit_complex().eval(), raw,
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_const_so2.unit_complex().data(),
raw.data());
Eigen::Map<SO2Type const> const_shallow_copy = map_of_const_so2;
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.unit_complex().eval(),
map_of_const_so2.unit_complex().eval());
Vector2<Scalar> raw2 = {1, 0};
Eigen::Map<SO2Type> map_of_so2(raw.data());
map_of_so2.setComplex(raw2);
SOPHUS_TEST_APPROX(passed, map_of_so2.unit_complex().eval(), raw2,
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_so2.unit_complex().data(), raw.data());
SOPHUS_TEST_NEQ(passed, map_of_so2.unit_complex().data(), raw2.data());
Eigen::Map<SO2Type> shallow_copy = map_of_so2;
SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_complex().eval(),
map_of_so2.unit_complex().eval());
SO2Type const const_so2(raw2);
for (int i = 0; i < 2; ++i) {
SOPHUS_TEST_EQUAL(passed, const_so2.data()[i], raw2.data()[i]);
}
SO2Type so2(raw2);
for (int i = 0; i < 2; ++i) {
so2.data()[i] = raw[i];
}
for (int i = 0; i < 2; ++i) {
SOPHUS_TEST_EQUAL(passed, so2.data()[i], raw.data()[i]);
}
Vector2<Scalar> data1 = {1, 0}, data2 = {0, 1};
Eigen::Map<SO2Type> map1(data1.data()), map2(data2.data());
// map -> map assignment
map2 = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
// map -> type assignment
SO2Type copy;
copy = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
// type -> map assignment
copy = SO2Type(Scalar(0.5));
map1 = copy;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
return passed;
}
bool testConstructors() {
bool passed = true;
Matrix2<Scalar> R = so2_vec_.front().matrix();
SO2Type so2(R);
SOPHUS_TEST_APPROX(passed, R, so2.matrix(), Constants<Scalar>::epsilon());
return passed;
}
template <class S = Scalar>
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
bool passed = true;
for (int i = 0; i < 100; ++i) {
Matrix2<Scalar> R = Matrix2<Scalar>::Random();
SO2Type so2 = SO2Type::fitToSO2(R);
SO2Type so2_2 = SO2Type::fitToSO2(so2.matrix());
SOPHUS_TEST_APPROX(passed, so2.matrix(), so2_2.matrix(),
Constants<Scalar>::epsilon());
}
return passed;
}
template <class S = Scalar>
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
return true;
}
std::vector<SO2Type, Eigen::aligned_allocator<SO2Type>> so2_vec_;
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
};
int test_so2() {
using std::cerr;
using std::endl;
cerr << "Test SO2" << endl << endl;
cerr << "Double tests: " << endl;
Tests<double>().runAll();
cerr << "Float tests: " << endl;
Tests<float>().runAll();
#if SOPHUS_CERES
cerr << "ceres::Jet<double, 3> tests: " << endl;
Tests<ceres::Jet<double, 3>>().runAll();
#endif
return 0;
}
} // namespace Sophus
int main() { return Sophus::test_so2(); }