ORB-SLAM3/Thirdparty/Sophus/test/core/test_so3.cpp

288 lines
10 KiB
C++

#include <iostream>
#include <sophus/interpolate.hpp>
#include <sophus/so3.hpp>
#include "tests.hpp"
// Explicit instantiate all class templates so that all member methods
// get compiled and for code coverage analysis.
namespace Eigen {
template class Map<Sophus::SO3<double>>;
template class Map<Sophus::SO3<double> const>;
} // namespace Eigen
namespace Sophus {
template class SO3<double, Eigen::AutoAlign>;
template class SO3<float, Eigen::DontAlign>;
#if SOPHUS_CERES
template class SO3<ceres::Jet<double, 3>>;
#endif
template <class Scalar>
class Tests {
public:
using SO3Type = SO3<Scalar>;
using Point = typename SO3<Scalar>::Point;
using Tangent = typename SO3<Scalar>::Tangent;
Scalar const kPi = Constants<Scalar>::pi();
Tests() {
so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
Scalar(0.1e-11), Scalar(0.), Scalar(1.), Scalar(0.))));
so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
Scalar(-1), Scalar(0.00001), Scalar(0.0), Scalar(0.0))));
so3_vec_.push_back(
SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))));
so3_vec_.push_back(
SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(-1.0))));
so3_vec_.push_back(SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.))));
so3_vec_.push_back(
SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.00001))));
so3_vec_.push_back(SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))));
so3_vec_.push_back(
SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))) *
SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
SO3Type::exp(Point(Scalar(-0.2), Scalar(-0.5), Scalar(-0.0))));
so3_vec_.push_back(
SO3Type::exp(Point(Scalar(0.3), Scalar(0.5), Scalar(0.1))) *
SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
SO3Type::exp(Point(Scalar(-0.3), Scalar(-0.5), Scalar(-0.1))));
tangent_vec_.push_back(Tangent(Scalar(0), Scalar(0), Scalar(0)));
tangent_vec_.push_back(Tangent(Scalar(1), Scalar(0), Scalar(0)));
tangent_vec_.push_back(Tangent(Scalar(0), Scalar(1), Scalar(0)));
tangent_vec_.push_back(
Tangent(Scalar(kPi / 2.), Scalar(kPi / 2.), Scalar(0)));
tangent_vec_.push_back(Tangent(Scalar(-1), Scalar(1), Scalar(0)));
tangent_vec_.push_back(Tangent(Scalar(20), Scalar(-1), Scalar(0)));
tangent_vec_.push_back(Tangent(Scalar(30), Scalar(5), Scalar(-1)));
point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4)));
point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5)));
}
void runAll() {
bool passed = testLieProperties();
passed &= testUnity();
passed &= testRawDataAcces();
passed &= testConstructors();
passed &= testSampleUniformSymmetry();
passed &= testFit();
processTestResult(passed);
}
private:
bool testLieProperties() {
LieGroupTests<SO3Type> tests(so3_vec_, tangent_vec_, point_vec_);
return tests.doAllTestsPass();
}
bool testUnity() {
bool passed = true;
// Test that the complex number magnitude stays close to one.
SO3Type current_q;
for (size_t i = 0; i < 1000; ++i) {
for (SO3Type const& q : so3_vec_) {
current_q *= q;
}
}
SOPHUS_TEST_APPROX(passed, current_q.unit_quaternion().norm(), Scalar(1),
Constants<Scalar>::epsilon(), "Magnitude drift");
return passed;
}
bool testRawDataAcces() {
bool passed = true;
Eigen::Matrix<Scalar, 4, 1> raw = {Scalar(0), Scalar(1), Scalar(0),
Scalar(0)};
Eigen::Map<SO3Type const> map_of_const_so3(raw.data());
SOPHUS_TEST_APPROX(passed,
map_of_const_so3.unit_quaternion().coeffs().eval(), raw,
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(
passed, map_of_const_so3.unit_quaternion().coeffs().data(), raw.data());
Eigen::Map<SO3Type const> const_shallow_copy = map_of_const_so3;
SOPHUS_TEST_EQUAL(passed,
const_shallow_copy.unit_quaternion().coeffs().eval(),
map_of_const_so3.unit_quaternion().coeffs().eval());
Eigen::Matrix<Scalar, 4, 1> raw2 = {Scalar(1), Scalar(0), Scalar(0),
Scalar(0)};
Eigen::Map<SO3Type> map_of_so3(raw.data());
Eigen::Quaternion<Scalar> quat;
quat.coeffs() = raw2;
map_of_so3.setQuaternion(quat);
SOPHUS_TEST_APPROX(passed, map_of_so3.unit_quaternion().coeffs().eval(),
raw2, Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_so3.unit_quaternion().coeffs().data(),
raw.data());
SOPHUS_TEST_NEQ(passed, map_of_so3.unit_quaternion().coeffs().data(),
quat.coeffs().data());
Eigen::Map<SO3Type> shallow_copy = map_of_so3;
SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_quaternion().coeffs().eval(),
map_of_so3.unit_quaternion().coeffs().eval());
SO3Type const const_so3(quat);
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]);
}
SO3Type so3(quat);
for (int i = 0; i < 4; ++i) {
so3.data()[i] = raw[i];
}
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]);
}
SOPHUS_TEST_EQUAL(
passed, SO3Type::rotX(Scalar(0.2)).matrix(),
SO3Type::exp(Point(Scalar(0.2), Scalar(0), Scalar(0))).matrix());
SOPHUS_TEST_EQUAL(
passed, SO3Type::rotY(Scalar(-0.2)).matrix(),
SO3Type::exp(Point(Scalar(0), Scalar(-0.2), Scalar(0))).matrix());
SOPHUS_TEST_EQUAL(
passed, SO3Type::rotZ(Scalar(1.1)).matrix(),
SO3Type::exp(Point(Scalar(0), Scalar(0), Scalar(1.1))).matrix());
Vector4<Scalar> data1(Scalar{1}, Scalar{0}, Scalar{0}, Scalar{0});
Vector4<Scalar> data2(Scalar{0}, Scalar{1}, Scalar{0}, Scalar{0});
Eigen::Map<SO3Type> map1(data1.data()), map2(data2.data());
// map -> map assignment
map2 = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
// map -> type assignment
SO3Type copy;
copy = map1;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
// type -> map assignment
copy = SO3Type::rotZ(Scalar(0.5));
map1 = copy;
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
return passed;
}
bool testConstructors() {
bool passed = true;
Matrix3<Scalar> R = so3_vec_.front().matrix();
SO3Type so3(R);
SOPHUS_TEST_APPROX(passed, R, so3.matrix(), Constants<Scalar>::epsilon());
return passed;
}
template <class S = Scalar>
enable_if_t<std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
bool passed = true;
std::default_random_engine generator(0);
// A non-rigorous test for checking that our sampleUniform() function is
// giving us symmetric results
//
// We (a) split the output space in half, (b) apply a series of random
// rotations to a point, (c) check which half of the output space each
// transformed point ends up, and then (d) apply a standard "coin toss"
// chi-square test
for (size_t trial = 0; trial < 5; trial++) {
std::normal_distribution<Scalar> normal(0, 10);
// Pick a random plane to split the output space by
Point plane_normal(normal(generator), normal(generator),
normal(generator));
plane_normal /= plane_normal.norm();
// Pick a random point to be rotated
Point input_point(normal(generator), normal(generator),
normal(generator));
input_point /= input_point.norm();
// Randomly rotate points and track # that land on each side of plane
size_t positive_count = 0;
size_t negative_count = 0;
size_t samples = 5000;
for (size_t i = 0; i < samples; ++i) {
SO3Type R = SO3Type::sampleUniform(generator);
if (plane_normal.dot(R * input_point) > 0)
positive_count++;
else
negative_count++;
}
// Chi-square computation, compare against critical value (p=0.01)
double expected_count = static_cast<double>(samples) / 2.0;
double chi_square =
pow(positive_count - expected_count, 2.0) / expected_count +
pow(negative_count - expected_count, 2.0) / expected_count;
SOPHUS_TEST(passed, chi_square < 6.635);
}
return passed;
}
template <class S = Scalar>
enable_if_t<!std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
return true;
}
template <class S = Scalar>
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
bool passed = true;
for (int i = 0; i < 100; ++i) {
Matrix3<Scalar> R = Matrix3<Scalar>::Random();
SO3Type so3 = SO3Type::fitToSO3(R);
SO3Type so3_2 = SO3Type::fitToSO3(so3.matrix());
SOPHUS_TEST_APPROX(passed, so3.matrix(), so3_2.matrix(),
Constants<Scalar>::epsilon());
}
for (Scalar const angle :
{Scalar(0.0), Scalar(0.1), Scalar(0.3), Scalar(-0.7)}) {
SOPHUS_TEST_APPROX(passed, SO3Type::rotX(angle).angleX(), angle,
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SO3Type::rotY(angle).angleY(), angle,
Constants<Scalar>::epsilon());
SOPHUS_TEST_APPROX(passed, SO3Type::rotZ(angle).angleZ(), angle,
Constants<Scalar>::epsilon());
}
return passed;
}
template <class S = Scalar>
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
return true;
}
std::vector<SO3Type, Eigen::aligned_allocator<SO3Type>> so3_vec_;
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
};
int test_so3() {
using std::cerr;
using std::endl;
cerr << "Test SO3" << endl << endl;
cerr << "Double tests: " << endl;
Tests<double>().runAll();
cerr << "Float tests: " << endl;
Tests<float>().runAll();
#if SOPHUS_CERES
cerr << "ceres::Jet<double, 3> tests: " << endl;
Tests<ceres::Jet<double, 3>>().runAll();
#endif
return 0;
}
} // namespace Sophus
int main() { return Sophus::test_so3(); }