288 lines
10 KiB
C++
288 lines
10 KiB
C++
#include <iostream>
|
|
|
|
#include <sophus/interpolate.hpp>
|
|
#include <sophus/so3.hpp>
|
|
#include "tests.hpp"
|
|
|
|
// Explicit instantiate all class templates so that all member methods
|
|
// get compiled and for code coverage analysis.
|
|
namespace Eigen {
|
|
template class Map<Sophus::SO3<double>>;
|
|
template class Map<Sophus::SO3<double> const>;
|
|
} // namespace Eigen
|
|
|
|
namespace Sophus {
|
|
|
|
template class SO3<double, Eigen::AutoAlign>;
|
|
template class SO3<float, Eigen::DontAlign>;
|
|
#if SOPHUS_CERES
|
|
template class SO3<ceres::Jet<double, 3>>;
|
|
#endif
|
|
|
|
template <class Scalar>
|
|
class Tests {
|
|
public:
|
|
using SO3Type = SO3<Scalar>;
|
|
using Point = typename SO3<Scalar>::Point;
|
|
using Tangent = typename SO3<Scalar>::Tangent;
|
|
Scalar const kPi = Constants<Scalar>::pi();
|
|
|
|
Tests() {
|
|
so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
|
|
Scalar(0.1e-11), Scalar(0.), Scalar(1.), Scalar(0.))));
|
|
so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
|
|
Scalar(-1), Scalar(0.00001), Scalar(0.0), Scalar(0.0))));
|
|
so3_vec_.push_back(
|
|
SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))));
|
|
so3_vec_.push_back(
|
|
SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(-1.0))));
|
|
so3_vec_.push_back(SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.))));
|
|
so3_vec_.push_back(
|
|
SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.00001))));
|
|
so3_vec_.push_back(SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))));
|
|
so3_vec_.push_back(
|
|
SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))) *
|
|
SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
|
|
SO3Type::exp(Point(Scalar(-0.2), Scalar(-0.5), Scalar(-0.0))));
|
|
so3_vec_.push_back(
|
|
SO3Type::exp(Point(Scalar(0.3), Scalar(0.5), Scalar(0.1))) *
|
|
SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
|
|
SO3Type::exp(Point(Scalar(-0.3), Scalar(-0.5), Scalar(-0.1))));
|
|
tangent_vec_.push_back(Tangent(Scalar(0), Scalar(0), Scalar(0)));
|
|
tangent_vec_.push_back(Tangent(Scalar(1), Scalar(0), Scalar(0)));
|
|
tangent_vec_.push_back(Tangent(Scalar(0), Scalar(1), Scalar(0)));
|
|
tangent_vec_.push_back(
|
|
Tangent(Scalar(kPi / 2.), Scalar(kPi / 2.), Scalar(0)));
|
|
tangent_vec_.push_back(Tangent(Scalar(-1), Scalar(1), Scalar(0)));
|
|
tangent_vec_.push_back(Tangent(Scalar(20), Scalar(-1), Scalar(0)));
|
|
tangent_vec_.push_back(Tangent(Scalar(30), Scalar(5), Scalar(-1)));
|
|
|
|
point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4)));
|
|
point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5)));
|
|
}
|
|
|
|
void runAll() {
|
|
bool passed = testLieProperties();
|
|
passed &= testUnity();
|
|
passed &= testRawDataAcces();
|
|
passed &= testConstructors();
|
|
passed &= testSampleUniformSymmetry();
|
|
passed &= testFit();
|
|
processTestResult(passed);
|
|
}
|
|
|
|
private:
|
|
bool testLieProperties() {
|
|
LieGroupTests<SO3Type> tests(so3_vec_, tangent_vec_, point_vec_);
|
|
return tests.doAllTestsPass();
|
|
}
|
|
|
|
bool testUnity() {
|
|
bool passed = true;
|
|
// Test that the complex number magnitude stays close to one.
|
|
SO3Type current_q;
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
for (SO3Type const& q : so3_vec_) {
|
|
current_q *= q;
|
|
}
|
|
}
|
|
SOPHUS_TEST_APPROX(passed, current_q.unit_quaternion().norm(), Scalar(1),
|
|
Constants<Scalar>::epsilon(), "Magnitude drift");
|
|
return passed;
|
|
}
|
|
|
|
bool testRawDataAcces() {
|
|
bool passed = true;
|
|
Eigen::Matrix<Scalar, 4, 1> raw = {Scalar(0), Scalar(1), Scalar(0),
|
|
Scalar(0)};
|
|
Eigen::Map<SO3Type const> map_of_const_so3(raw.data());
|
|
SOPHUS_TEST_APPROX(passed,
|
|
map_of_const_so3.unit_quaternion().coeffs().eval(), raw,
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_EQUAL(
|
|
passed, map_of_const_so3.unit_quaternion().coeffs().data(), raw.data());
|
|
Eigen::Map<SO3Type const> const_shallow_copy = map_of_const_so3;
|
|
SOPHUS_TEST_EQUAL(passed,
|
|
const_shallow_copy.unit_quaternion().coeffs().eval(),
|
|
map_of_const_so3.unit_quaternion().coeffs().eval());
|
|
|
|
Eigen::Matrix<Scalar, 4, 1> raw2 = {Scalar(1), Scalar(0), Scalar(0),
|
|
Scalar(0)};
|
|
Eigen::Map<SO3Type> map_of_so3(raw.data());
|
|
Eigen::Quaternion<Scalar> quat;
|
|
quat.coeffs() = raw2;
|
|
map_of_so3.setQuaternion(quat);
|
|
SOPHUS_TEST_APPROX(passed, map_of_so3.unit_quaternion().coeffs().eval(),
|
|
raw2, Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_EQUAL(passed, map_of_so3.unit_quaternion().coeffs().data(),
|
|
raw.data());
|
|
SOPHUS_TEST_NEQ(passed, map_of_so3.unit_quaternion().coeffs().data(),
|
|
quat.coeffs().data());
|
|
Eigen::Map<SO3Type> shallow_copy = map_of_so3;
|
|
SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_quaternion().coeffs().eval(),
|
|
map_of_so3.unit_quaternion().coeffs().eval());
|
|
|
|
SO3Type const const_so3(quat);
|
|
for (int i = 0; i < 4; ++i) {
|
|
SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]);
|
|
}
|
|
|
|
SO3Type so3(quat);
|
|
for (int i = 0; i < 4; ++i) {
|
|
so3.data()[i] = raw[i];
|
|
}
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]);
|
|
}
|
|
|
|
SOPHUS_TEST_EQUAL(
|
|
passed, SO3Type::rotX(Scalar(0.2)).matrix(),
|
|
SO3Type::exp(Point(Scalar(0.2), Scalar(0), Scalar(0))).matrix());
|
|
SOPHUS_TEST_EQUAL(
|
|
passed, SO3Type::rotY(Scalar(-0.2)).matrix(),
|
|
SO3Type::exp(Point(Scalar(0), Scalar(-0.2), Scalar(0))).matrix());
|
|
SOPHUS_TEST_EQUAL(
|
|
passed, SO3Type::rotZ(Scalar(1.1)).matrix(),
|
|
SO3Type::exp(Point(Scalar(0), Scalar(0), Scalar(1.1))).matrix());
|
|
|
|
Vector4<Scalar> data1(Scalar{1}, Scalar{0}, Scalar{0}, Scalar{0});
|
|
Vector4<Scalar> data2(Scalar{0}, Scalar{1}, Scalar{0}, Scalar{0});
|
|
Eigen::Map<SO3Type> map1(data1.data()), map2(data2.data());
|
|
|
|
// map -> map assignment
|
|
map2 = map1;
|
|
SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
|
|
|
|
// map -> type assignment
|
|
SO3Type copy;
|
|
copy = map1;
|
|
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
|
|
|
|
// type -> map assignment
|
|
copy = SO3Type::rotZ(Scalar(0.5));
|
|
map1 = copy;
|
|
SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
|
|
|
|
return passed;
|
|
}
|
|
|
|
bool testConstructors() {
|
|
bool passed = true;
|
|
Matrix3<Scalar> R = so3_vec_.front().matrix();
|
|
SO3Type so3(R);
|
|
SOPHUS_TEST_APPROX(passed, R, so3.matrix(), Constants<Scalar>::epsilon());
|
|
|
|
return passed;
|
|
}
|
|
|
|
template <class S = Scalar>
|
|
enable_if_t<std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
|
|
bool passed = true;
|
|
std::default_random_engine generator(0);
|
|
|
|
// A non-rigorous test for checking that our sampleUniform() function is
|
|
// giving us symmetric results
|
|
//
|
|
// We (a) split the output space in half, (b) apply a series of random
|
|
// rotations to a point, (c) check which half of the output space each
|
|
// transformed point ends up, and then (d) apply a standard "coin toss"
|
|
// chi-square test
|
|
|
|
for (size_t trial = 0; trial < 5; trial++) {
|
|
std::normal_distribution<Scalar> normal(0, 10);
|
|
|
|
// Pick a random plane to split the output space by
|
|
Point plane_normal(normal(generator), normal(generator),
|
|
normal(generator));
|
|
plane_normal /= plane_normal.norm();
|
|
|
|
// Pick a random point to be rotated
|
|
Point input_point(normal(generator), normal(generator),
|
|
normal(generator));
|
|
input_point /= input_point.norm();
|
|
|
|
// Randomly rotate points and track # that land on each side of plane
|
|
size_t positive_count = 0;
|
|
size_t negative_count = 0;
|
|
size_t samples = 5000;
|
|
for (size_t i = 0; i < samples; ++i) {
|
|
SO3Type R = SO3Type::sampleUniform(generator);
|
|
if (plane_normal.dot(R * input_point) > 0)
|
|
positive_count++;
|
|
else
|
|
negative_count++;
|
|
}
|
|
|
|
// Chi-square computation, compare against critical value (p=0.01)
|
|
double expected_count = static_cast<double>(samples) / 2.0;
|
|
double chi_square =
|
|
pow(positive_count - expected_count, 2.0) / expected_count +
|
|
pow(negative_count - expected_count, 2.0) / expected_count;
|
|
SOPHUS_TEST(passed, chi_square < 6.635);
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
template <class S = Scalar>
|
|
enable_if_t<!std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
|
|
return true;
|
|
}
|
|
|
|
template <class S = Scalar>
|
|
enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
|
|
bool passed = true;
|
|
|
|
for (int i = 0; i < 100; ++i) {
|
|
Matrix3<Scalar> R = Matrix3<Scalar>::Random();
|
|
SO3Type so3 = SO3Type::fitToSO3(R);
|
|
SO3Type so3_2 = SO3Type::fitToSO3(so3.matrix());
|
|
|
|
SOPHUS_TEST_APPROX(passed, so3.matrix(), so3_2.matrix(),
|
|
Constants<Scalar>::epsilon());
|
|
}
|
|
|
|
for (Scalar const angle :
|
|
{Scalar(0.0), Scalar(0.1), Scalar(0.3), Scalar(-0.7)}) {
|
|
SOPHUS_TEST_APPROX(passed, SO3Type::rotX(angle).angleX(), angle,
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed, SO3Type::rotY(angle).angleY(), angle,
|
|
Constants<Scalar>::epsilon());
|
|
SOPHUS_TEST_APPROX(passed, SO3Type::rotZ(angle).angleZ(), angle,
|
|
Constants<Scalar>::epsilon());
|
|
}
|
|
return passed;
|
|
}
|
|
|
|
template <class S = Scalar>
|
|
enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
|
|
return true;
|
|
}
|
|
|
|
std::vector<SO3Type, Eigen::aligned_allocator<SO3Type>> so3_vec_;
|
|
std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
|
|
std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
|
|
};
|
|
|
|
int test_so3() {
|
|
using std::cerr;
|
|
using std::endl;
|
|
|
|
cerr << "Test SO3" << endl << endl;
|
|
cerr << "Double tests: " << endl;
|
|
Tests<double>().runAll();
|
|
cerr << "Float tests: " << endl;
|
|
Tests<float>().runAll();
|
|
|
|
#if SOPHUS_CERES
|
|
cerr << "ceres::Jet<double, 3> tests: " << endl;
|
|
Tests<ceres::Jet<double, 3>>().runAll();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
} // namespace Sophus
|
|
|
|
int main() { return Sophus::test_so3(); }
|