UWB-Algorithm/UWBAnimationShow/AHRS.m

111 lines
5.0 KiB
Matlab
Raw Normal View History

2024-04-27 17:13:37 +08:00
classdef AHRS < handle
%% Public properties
properties (Access = public)
SamplePeriod = 1/256;
Quaternion = [1 0 0 0]; % output quaternion describing the sensor relative to the Earth
Kp = 2; % proportional gain
Ki = 0; % integral gain
KpInit = 200; % proportional gain used during initialisation
InitPeriod = 5; % initialisation period in seconds
end
%% Private properties
properties (Access = private)
q = [1 0 0 0]; % internal quaternion describing the Earth relative to the sensor
IntError = [0 0 0]'; % integral error
KpRamped; % internal proportional gain used to ramp during initialisation
end
%% Public methods
methods (Access = public)
function obj = AHRS(varargin)
for i = 1:2:nargin
if strcmp(varargin{i}, 'SamplePeriod'), obj.SamplePeriod = varargin{i+1};
elseif strcmp(varargin{i}, 'Quaternion')
obj.Quaternion = varargin{i+1};
obj.q = quaternConj(obj.Quaternion);
elseif strcmp(varargin{i}, 'Kp'), obj.Kp = varargin{i+1};
elseif strcmp(varargin{i}, 'Ki'), obj.Ki = varargin{i+1};
elseif strcmp(varargin{i}, 'KpInit'), obj.KpInit = varargin{i+1};
elseif strcmp(varargin{i}, 'InitPeriod'), obj.InitPeriod = varargin{i+1};
else error('Invalid argument');
end
obj.KpRamped = obj.KpInit;
end;
end
function obj = Update(obj, Gyroscope, Accelerometer, Magnetometer)
error('This method is unimplemented');
end
function obj = UpdateIMU(obj, Gyroscope, Accelerometer)
% Normalise accelerometer measurement
if(norm(Accelerometer) == 0) % handle NaN
warning(0, 'Accelerometer magnitude is zero. Algorithm update aborted.');
return;
else
Accelerometer = Accelerometer / norm(Accelerometer); % normalise measurement
end
% Compute error between estimated and measured direction of gravity
v = [2*(obj.q(2)*obj.q(4) - obj.q(1)*obj.q(3))
2*(obj.q(1)*obj.q(2) + obj.q(3)*obj.q(4))
obj.q(1)^2 - obj.q(2)^2 - obj.q(3)^2 + obj.q(4)^2]; % estimated direction of gravity
error = cross(v, Accelerometer');
% % Compute ramped Kp value used during init period
% if(obj.KpRamped > obj.Kp)
% obj.IntError = [0 0 0]';
% obj.KpRamped = obj.KpRamped - (obj.KpInit - obj.Kp) / (obj.InitPeriod / obj.SamplePeriod);
% else % init period complete
% obj.KpRamped = obj.Kp;
obj.IntError = obj.IntError + error; % compute integral feedback terms (only outside of init period)
% end
% Apply feedback terms
Ref = Gyroscope - (obj.Kp*error + obj.Ki*obj.IntError)';
% Compute rate of change of quaternion
pDot = 0.5 * obj.quaternProd(obj.q, [0 Ref(1) Ref(2) Ref(3)]); % compute rate of change of quaternion
obj.q = obj.q + pDot * obj.SamplePeriod; % integrate rate of change of quaternion
obj.q = obj.q / norm(obj.q); % normalise quaternion
% Store conjugate
obj.Quaternion = obj.quaternConj(obj.q);
end
function obj = Reset(obj)
obj.KpRamped = obj.KpInit; % start Kp ramp-down
obj.IntError = [0 0 0]'; % reset integral terms
obj.q = [1 0 0 0]; % set quaternion to alignment
end
% function obj = StepDownKp(obj, Kp)
% obj.KpRamped = Kp;
% obj.Kp = Kp;
% end
end
%% Get/set methods
methods
function obj = set.Quaternion(obj, value)
if(norm(value) == 0)
error('Quaternion magnitude cannot be zero.');
end
value = value / norm(value);
obj.Quaternion = value;
obj.q = obj.quaternConj(value);
end
end
%% Private methods
methods (Access = private)
function ab = quaternProd(obj, a, b)
ab(:,1) = a(:,1).*b(:,1)-a(:,2).*b(:,2)-a(:,3).*b(:,3)-a(:,4).*b(:,4);
ab(:,2) = a(:,1).*b(:,2)+a(:,2).*b(:,1)+a(:,3).*b(:,4)-a(:,4).*b(:,3);
ab(:,3) = a(:,1).*b(:,3)-a(:,2).*b(:,4)+a(:,3).*b(:,1)+a(:,4).*b(:,2);
ab(:,4) = a(:,1).*b(:,4)+a(:,2).*b(:,3)-a(:,3).*b(:,2)+a(:,4).*b(:,1);
end
function qConj = quaternConj(obj, q)
qConj = [q(:,1) -q(:,2) -q(:,3) -q(:,4)];
end
end
end