forked from zhurui/management
549 lines
11 KiB
JavaScript
549 lines
11 KiB
JavaScript
/*
|
|
Language: Stan
|
|
Description: The Stan probabilistic programming language
|
|
Author: Jeffrey B. Arnold <jeffrey.arnold@gmail.com>
|
|
Website: http://mc-stan.org/
|
|
Category: scientific
|
|
*/
|
|
|
|
function stan(hljs) {
|
|
// variable names cannot conflict with block identifiers
|
|
const BLOCKS = [
|
|
'functions',
|
|
'model',
|
|
'data',
|
|
'parameters',
|
|
'quantities',
|
|
'transformed',
|
|
'generated'
|
|
];
|
|
const STATEMENTS = [
|
|
'for',
|
|
'in',
|
|
'if',
|
|
'else',
|
|
'while',
|
|
'break',
|
|
'continue',
|
|
'return'
|
|
];
|
|
const SPECIAL_FUNCTIONS = [
|
|
'print',
|
|
'reject',
|
|
'increment_log_prob|10',
|
|
'integrate_ode|10',
|
|
'integrate_ode_rk45|10',
|
|
'integrate_ode_bdf|10',
|
|
'algebra_solver'
|
|
];
|
|
const VAR_TYPES = [
|
|
'int',
|
|
'real',
|
|
'vector',
|
|
'ordered',
|
|
'positive_ordered',
|
|
'simplex',
|
|
'unit_vector',
|
|
'row_vector',
|
|
'matrix',
|
|
'cholesky_factor_corr|10',
|
|
'cholesky_factor_cov|10',
|
|
'corr_matrix|10',
|
|
'cov_matrix|10',
|
|
'void'
|
|
];
|
|
const FUNCTIONS = [
|
|
'Phi',
|
|
'Phi_approx',
|
|
'abs',
|
|
'acos',
|
|
'acosh',
|
|
'algebra_solver',
|
|
'append_array',
|
|
'append_col',
|
|
'append_row',
|
|
'asin',
|
|
'asinh',
|
|
'atan',
|
|
'atan2',
|
|
'atanh',
|
|
'bernoulli_cdf',
|
|
'bernoulli_lccdf',
|
|
'bernoulli_lcdf',
|
|
'bernoulli_logit_lpmf',
|
|
'bernoulli_logit_rng',
|
|
'bernoulli_lpmf',
|
|
'bernoulli_rng',
|
|
'bessel_first_kind',
|
|
'bessel_second_kind',
|
|
'beta_binomial_cdf',
|
|
'beta_binomial_lccdf',
|
|
'beta_binomial_lcdf',
|
|
'beta_binomial_lpmf',
|
|
'beta_binomial_rng',
|
|
'beta_cdf',
|
|
'beta_lccdf',
|
|
'beta_lcdf',
|
|
'beta_lpdf',
|
|
'beta_rng',
|
|
'binary_log_loss',
|
|
'binomial_cdf',
|
|
'binomial_coefficient_log',
|
|
'binomial_lccdf',
|
|
'binomial_lcdf',
|
|
'binomial_logit_lpmf',
|
|
'binomial_lpmf',
|
|
'binomial_rng',
|
|
'block',
|
|
'categorical_logit_lpmf',
|
|
'categorical_logit_rng',
|
|
'categorical_lpmf',
|
|
'categorical_rng',
|
|
'cauchy_cdf',
|
|
'cauchy_lccdf',
|
|
'cauchy_lcdf',
|
|
'cauchy_lpdf',
|
|
'cauchy_rng',
|
|
'cbrt',
|
|
'ceil',
|
|
'chi_square_cdf',
|
|
'chi_square_lccdf',
|
|
'chi_square_lcdf',
|
|
'chi_square_lpdf',
|
|
'chi_square_rng',
|
|
'cholesky_decompose',
|
|
'choose',
|
|
'col',
|
|
'cols',
|
|
'columns_dot_product',
|
|
'columns_dot_self',
|
|
'cos',
|
|
'cosh',
|
|
'cov_exp_quad',
|
|
'crossprod',
|
|
'csr_extract_u',
|
|
'csr_extract_v',
|
|
'csr_extract_w',
|
|
'csr_matrix_times_vector',
|
|
'csr_to_dense_matrix',
|
|
'cumulative_sum',
|
|
'determinant',
|
|
'diag_matrix',
|
|
'diag_post_multiply',
|
|
'diag_pre_multiply',
|
|
'diagonal',
|
|
'digamma',
|
|
'dims',
|
|
'dirichlet_lpdf',
|
|
'dirichlet_rng',
|
|
'distance',
|
|
'dot_product',
|
|
'dot_self',
|
|
'double_exponential_cdf',
|
|
'double_exponential_lccdf',
|
|
'double_exponential_lcdf',
|
|
'double_exponential_lpdf',
|
|
'double_exponential_rng',
|
|
'e',
|
|
'eigenvalues_sym',
|
|
'eigenvectors_sym',
|
|
'erf',
|
|
'erfc',
|
|
'exp',
|
|
'exp2',
|
|
'exp_mod_normal_cdf',
|
|
'exp_mod_normal_lccdf',
|
|
'exp_mod_normal_lcdf',
|
|
'exp_mod_normal_lpdf',
|
|
'exp_mod_normal_rng',
|
|
'expm1',
|
|
'exponential_cdf',
|
|
'exponential_lccdf',
|
|
'exponential_lcdf',
|
|
'exponential_lpdf',
|
|
'exponential_rng',
|
|
'fabs',
|
|
'falling_factorial',
|
|
'fdim',
|
|
'floor',
|
|
'fma',
|
|
'fmax',
|
|
'fmin',
|
|
'fmod',
|
|
'frechet_cdf',
|
|
'frechet_lccdf',
|
|
'frechet_lcdf',
|
|
'frechet_lpdf',
|
|
'frechet_rng',
|
|
'gamma_cdf',
|
|
'gamma_lccdf',
|
|
'gamma_lcdf',
|
|
'gamma_lpdf',
|
|
'gamma_p',
|
|
'gamma_q',
|
|
'gamma_rng',
|
|
'gaussian_dlm_obs_lpdf',
|
|
'get_lp',
|
|
'gumbel_cdf',
|
|
'gumbel_lccdf',
|
|
'gumbel_lcdf',
|
|
'gumbel_lpdf',
|
|
'gumbel_rng',
|
|
'head',
|
|
'hypergeometric_lpmf',
|
|
'hypergeometric_rng',
|
|
'hypot',
|
|
'inc_beta',
|
|
'int_step',
|
|
'integrate_ode',
|
|
'integrate_ode_bdf',
|
|
'integrate_ode_rk45',
|
|
'inv',
|
|
'inv_Phi',
|
|
'inv_chi_square_cdf',
|
|
'inv_chi_square_lccdf',
|
|
'inv_chi_square_lcdf',
|
|
'inv_chi_square_lpdf',
|
|
'inv_chi_square_rng',
|
|
'inv_cloglog',
|
|
'inv_gamma_cdf',
|
|
'inv_gamma_lccdf',
|
|
'inv_gamma_lcdf',
|
|
'inv_gamma_lpdf',
|
|
'inv_gamma_rng',
|
|
'inv_logit',
|
|
'inv_sqrt',
|
|
'inv_square',
|
|
'inv_wishart_lpdf',
|
|
'inv_wishart_rng',
|
|
'inverse',
|
|
'inverse_spd',
|
|
'is_inf',
|
|
'is_nan',
|
|
'lbeta',
|
|
'lchoose',
|
|
'lgamma',
|
|
'lkj_corr_cholesky_lpdf',
|
|
'lkj_corr_cholesky_rng',
|
|
'lkj_corr_lpdf',
|
|
'lkj_corr_rng',
|
|
'lmgamma',
|
|
'lmultiply',
|
|
'log',
|
|
'log10',
|
|
'log1m',
|
|
'log1m_exp',
|
|
'log1m_inv_logit',
|
|
'log1p',
|
|
'log1p_exp',
|
|
'log2',
|
|
'log_determinant',
|
|
'log_diff_exp',
|
|
'log_falling_factorial',
|
|
'log_inv_logit',
|
|
'log_mix',
|
|
'log_rising_factorial',
|
|
'log_softmax',
|
|
'log_sum_exp',
|
|
'logistic_cdf',
|
|
'logistic_lccdf',
|
|
'logistic_lcdf',
|
|
'logistic_lpdf',
|
|
'logistic_rng',
|
|
'logit',
|
|
'lognormal_cdf',
|
|
'lognormal_lccdf',
|
|
'lognormal_lcdf',
|
|
'lognormal_lpdf',
|
|
'lognormal_rng',
|
|
'machine_precision',
|
|
'matrix_exp',
|
|
'max',
|
|
'mdivide_left_spd',
|
|
'mdivide_left_tri_low',
|
|
'mdivide_right_spd',
|
|
'mdivide_right_tri_low',
|
|
'mean',
|
|
'min',
|
|
'modified_bessel_first_kind',
|
|
'modified_bessel_second_kind',
|
|
'multi_gp_cholesky_lpdf',
|
|
'multi_gp_lpdf',
|
|
'multi_normal_cholesky_lpdf',
|
|
'multi_normal_cholesky_rng',
|
|
'multi_normal_lpdf',
|
|
'multi_normal_prec_lpdf',
|
|
'multi_normal_rng',
|
|
'multi_student_t_lpdf',
|
|
'multi_student_t_rng',
|
|
'multinomial_lpmf',
|
|
'multinomial_rng',
|
|
'multiply_log',
|
|
'multiply_lower_tri_self_transpose',
|
|
'neg_binomial_2_cdf',
|
|
'neg_binomial_2_lccdf',
|
|
'neg_binomial_2_lcdf',
|
|
'neg_binomial_2_log_lpmf',
|
|
'neg_binomial_2_log_rng',
|
|
'neg_binomial_2_lpmf',
|
|
'neg_binomial_2_rng',
|
|
'neg_binomial_cdf',
|
|
'neg_binomial_lccdf',
|
|
'neg_binomial_lcdf',
|
|
'neg_binomial_lpmf',
|
|
'neg_binomial_rng',
|
|
'negative_infinity',
|
|
'normal_cdf',
|
|
'normal_lccdf',
|
|
'normal_lcdf',
|
|
'normal_lpdf',
|
|
'normal_rng',
|
|
'not_a_number',
|
|
'num_elements',
|
|
'ordered_logistic_lpmf',
|
|
'ordered_logistic_rng',
|
|
'owens_t',
|
|
'pareto_cdf',
|
|
'pareto_lccdf',
|
|
'pareto_lcdf',
|
|
'pareto_lpdf',
|
|
'pareto_rng',
|
|
'pareto_type_2_cdf',
|
|
'pareto_type_2_lccdf',
|
|
'pareto_type_2_lcdf',
|
|
'pareto_type_2_lpdf',
|
|
'pareto_type_2_rng',
|
|
'pi',
|
|
'poisson_cdf',
|
|
'poisson_lccdf',
|
|
'poisson_lcdf',
|
|
'poisson_log_lpmf',
|
|
'poisson_log_rng',
|
|
'poisson_lpmf',
|
|
'poisson_rng',
|
|
'positive_infinity',
|
|
'pow',
|
|
'print',
|
|
'prod',
|
|
'qr_Q',
|
|
'qr_R',
|
|
'quad_form',
|
|
'quad_form_diag',
|
|
'quad_form_sym',
|
|
'rank',
|
|
'rayleigh_cdf',
|
|
'rayleigh_lccdf',
|
|
'rayleigh_lcdf',
|
|
'rayleigh_lpdf',
|
|
'rayleigh_rng',
|
|
'reject',
|
|
'rep_array',
|
|
'rep_matrix',
|
|
'rep_row_vector',
|
|
'rep_vector',
|
|
'rising_factorial',
|
|
'round',
|
|
'row',
|
|
'rows',
|
|
'rows_dot_product',
|
|
'rows_dot_self',
|
|
'scaled_inv_chi_square_cdf',
|
|
'scaled_inv_chi_square_lccdf',
|
|
'scaled_inv_chi_square_lcdf',
|
|
'scaled_inv_chi_square_lpdf',
|
|
'scaled_inv_chi_square_rng',
|
|
'sd',
|
|
'segment',
|
|
'sin',
|
|
'singular_values',
|
|
'sinh',
|
|
'size',
|
|
'skew_normal_cdf',
|
|
'skew_normal_lccdf',
|
|
'skew_normal_lcdf',
|
|
'skew_normal_lpdf',
|
|
'skew_normal_rng',
|
|
'softmax',
|
|
'sort_asc',
|
|
'sort_desc',
|
|
'sort_indices_asc',
|
|
'sort_indices_desc',
|
|
'sqrt',
|
|
'sqrt2',
|
|
'square',
|
|
'squared_distance',
|
|
'step',
|
|
'student_t_cdf',
|
|
'student_t_lccdf',
|
|
'student_t_lcdf',
|
|
'student_t_lpdf',
|
|
'student_t_rng',
|
|
'sub_col',
|
|
'sub_row',
|
|
'sum',
|
|
'tail',
|
|
'tan',
|
|
'tanh',
|
|
'target',
|
|
'tcrossprod',
|
|
'tgamma',
|
|
'to_array_1d',
|
|
'to_array_2d',
|
|
'to_matrix',
|
|
'to_row_vector',
|
|
'to_vector',
|
|
'trace',
|
|
'trace_gen_quad_form',
|
|
'trace_quad_form',
|
|
'trigamma',
|
|
'trunc',
|
|
'uniform_cdf',
|
|
'uniform_lccdf',
|
|
'uniform_lcdf',
|
|
'uniform_lpdf',
|
|
'uniform_rng',
|
|
'variance',
|
|
'von_mises_lpdf',
|
|
'von_mises_rng',
|
|
'weibull_cdf',
|
|
'weibull_lccdf',
|
|
'weibull_lcdf',
|
|
'weibull_lpdf',
|
|
'weibull_rng',
|
|
'wiener_lpdf',
|
|
'wishart_lpdf',
|
|
'wishart_rng'
|
|
];
|
|
const DISTRIBUTIONS = [
|
|
'bernoulli',
|
|
'bernoulli_logit',
|
|
'beta',
|
|
'beta_binomial',
|
|
'binomial',
|
|
'binomial_logit',
|
|
'categorical',
|
|
'categorical_logit',
|
|
'cauchy',
|
|
'chi_square',
|
|
'dirichlet',
|
|
'double_exponential',
|
|
'exp_mod_normal',
|
|
'exponential',
|
|
'frechet',
|
|
'gamma',
|
|
'gaussian_dlm_obs',
|
|
'gumbel',
|
|
'hypergeometric',
|
|
'inv_chi_square',
|
|
'inv_gamma',
|
|
'inv_wishart',
|
|
'lkj_corr',
|
|
'lkj_corr_cholesky',
|
|
'logistic',
|
|
'lognormal',
|
|
'multi_gp',
|
|
'multi_gp_cholesky',
|
|
'multi_normal',
|
|
'multi_normal_cholesky',
|
|
'multi_normal_prec',
|
|
'multi_student_t',
|
|
'multinomial',
|
|
'neg_binomial',
|
|
'neg_binomial_2',
|
|
'neg_binomial_2_log',
|
|
'normal',
|
|
'ordered_logistic',
|
|
'pareto',
|
|
'pareto_type_2',
|
|
'poisson',
|
|
'poisson_log',
|
|
'rayleigh',
|
|
'scaled_inv_chi_square',
|
|
'skew_normal',
|
|
'student_t',
|
|
'uniform',
|
|
'von_mises',
|
|
'weibull',
|
|
'wiener',
|
|
'wishart'
|
|
];
|
|
|
|
return {
|
|
name: 'Stan',
|
|
aliases: [ 'stanfuncs' ],
|
|
keywords: {
|
|
$pattern: hljs.IDENT_RE,
|
|
title: BLOCKS,
|
|
keyword: STATEMENTS.concat(VAR_TYPES).concat(SPECIAL_FUNCTIONS),
|
|
built_in: FUNCTIONS
|
|
},
|
|
contains: [
|
|
hljs.C_LINE_COMMENT_MODE,
|
|
hljs.COMMENT(
|
|
/#/,
|
|
/$/,
|
|
{
|
|
relevance: 0,
|
|
keywords: {
|
|
'meta-keyword': 'include'
|
|
}
|
|
}
|
|
),
|
|
hljs.COMMENT(
|
|
/\/\*/,
|
|
/\*\//,
|
|
{
|
|
relevance: 0,
|
|
// highlight doc strings mentioned in Stan reference
|
|
contains: [
|
|
{
|
|
className: 'doctag',
|
|
begin: /@(return|param)/
|
|
}
|
|
]
|
|
}
|
|
),
|
|
{
|
|
// hack: in range constraints, lower must follow "<"
|
|
begin: /<\s*lower\s*=/,
|
|
keywords: 'lower'
|
|
},
|
|
{
|
|
// hack: in range constraints, upper must follow either , or <
|
|
// <lower = ..., upper = ...> or <upper = ...>
|
|
begin: /[<,]\s*upper\s*=/,
|
|
keywords: 'upper'
|
|
},
|
|
{
|
|
className: 'keyword',
|
|
begin: /\btarget\s*\+=/,
|
|
relevance: 10
|
|
},
|
|
{
|
|
begin: '~\\s*(' + hljs.IDENT_RE + ')\\s*\\(',
|
|
keywords: DISTRIBUTIONS
|
|
},
|
|
{
|
|
className: 'number',
|
|
variants: [
|
|
{
|
|
begin: /\b\d+(?:\.\d*)?(?:[eE][+-]?\d+)?/
|
|
},
|
|
{
|
|
begin: /\.\d+(?:[eE][+-]?\d+)?\b/
|
|
}
|
|
],
|
|
relevance: 0
|
|
},
|
|
{
|
|
className: 'string',
|
|
begin: '"',
|
|
end: '"',
|
|
relevance: 0
|
|
}
|
|
]
|
|
};
|
|
}
|
|
|
|
module.exports = stan;
|