1
0
Fork 0
ORB-SLAM3-UESTC/Workspace/Thirdparty/Sophus/sophus/rxso3.hpp

726 lines
24 KiB
C++
Raw Normal View History

2023-11-28 19:20:25 +08:00
/// @file
/// Direct product R X SO(3) - rotation and scaling in 3d.
#ifndef SOPHUS_RXSO3_HPP
#define SOPHUS_RXSO3_HPP
#include "so3.hpp"
namespace Sophus {
template <class Scalar_, int Options = 0>
class RxSO3;
using RxSO3d = RxSO3<double>;
using RxSO3f = RxSO3<float>;
} // namespace Sophus
namespace Eigen {
namespace internal {
template <class Scalar_, int Options_>
struct traits<Sophus::RxSO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Eigen::Quaternion<Scalar, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::RxSO3<Scalar_>, Options_>>
: traits<Sophus::RxSO3<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar>, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::RxSO3<Scalar_> const, Options_>>
: traits<Sophus::RxSO3<Scalar_, Options_> const> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using QuaternionType = Map<Eigen::Quaternion<Scalar> const, Options>;
};
} // namespace internal
} // namespace Eigen
namespace Sophus {
/// RxSO3 base type - implements RxSO3 class but is storage agnostic
///
/// This class implements the group ``R+ x SO(3)``, the direct product of the
/// group of positive scalar 3x3 matrices (= isomorph to the positive
/// real numbers) and the three-dimensional special orthogonal group SO(3).
/// Geometrically, it is the group of rotation and scaling in three dimensions.
/// As a matrix groups, RxSO3 consists of matrices of the form ``s * R``
/// where ``R`` is an orthogonal matrix with ``det(R)=1`` and ``s > 0``
/// being a positive real number.
///
/// Internally, RxSO3 is represented by the group of non-zero quaternions.
/// In particular, the scale equals the squared(!) norm of the quaternion ``q``,
/// ``s = |q|^2``. This is a most compact representation since the degrees of
/// freedom (DoF) of RxSO3 (=4) equals the number of internal parameters (=4).
///
/// This class has the explicit class invariant that the scale ``s`` is not
/// too close to zero. Strictly speaking, it must hold that:
///
/// ``quaternion().squaredNorm() >= Constants::epsilon()``.
///
/// In order to obey this condition, group multiplication is implemented with
/// saturation such that a product always has a scale which is equal or greater
/// this threshold.
template <class Derived>
class RxSO3Base {
public:
static constexpr int Options = Eigen::internal::traits<Derived>::Options;
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
using QuaternionType =
typename Eigen::internal::traits<Derived>::QuaternionType;
using QuaternionTemporaryType = Eigen::Quaternion<Scalar, Options>;
/// Degrees of freedom of manifold, number of dimensions in tangent space
/// (three for rotation and one for scaling).
static int constexpr DoF = 4;
/// Number of internal parameters used (quaternion is a 4-tuple).
static int constexpr num_parameters = 4;
/// Group transformations are 3x3 matrices.
static int constexpr N = 3;
using Transformation = Matrix<Scalar, N, N>;
using Point = Vector3<Scalar>;
using HomogeneousPoint = Vector4<Scalar>;
using Line = ParametrizedLine3<Scalar>;
using Tangent = Vector<Scalar, DoF>;
using Adjoint = Matrix<Scalar, DoF, DoF>;
struct TangentAndTheta {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Tangent tangent;
Scalar theta;
};
/// For binary operations the return type is determined with the
/// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
/// types, as well as other compatible scalar types such as Ceres::Jet and
/// double scalars with RxSO3 operations.
template <typename OtherDerived>
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
Scalar, typename OtherDerived::Scalar>::ReturnType;
template <typename OtherDerived>
using RxSO3Product = RxSO3<ReturnScalar<OtherDerived>>;
template <typename PointDerived>
using PointProduct = Vector3<ReturnScalar<PointDerived>>;
template <typename HPointDerived>
using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
/// Adjoint transformation
///
/// This function return the adjoint transformation ``Ad`` of the group
/// element ``A`` such that for all ``x`` it holds that
/// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
///
/// For RxSO(3), it simply returns the rotation matrix corresponding to ``A``.
///
SOPHUS_FUNC Adjoint Adj() const {
Adjoint res;
res.setIdentity();
res.template topLeftCorner<3, 3>() = rotationMatrix();
return res;
}
/// Returns copy of instance casted to NewScalarType.
///
template <class NewScalarType>
SOPHUS_FUNC RxSO3<NewScalarType> cast() const {
return RxSO3<NewScalarType>(quaternion().template cast<NewScalarType>());
}
/// This provides unsafe read/write access to internal data. RxSO(3) is
/// represented by an Eigen::Quaternion (four parameters). When using direct
/// write access, the user needs to take care of that the quaternion is not
/// set close to zero.
///
/// Note: The first three Scalars represent the imaginary parts, while the
/// forth Scalar represent the real part.
///
SOPHUS_FUNC Scalar* data() { return quaternion_nonconst().coeffs().data(); }
/// Const version of data() above.
///
SOPHUS_FUNC Scalar const* data() const {
return quaternion().coeffs().data();
}
/// Returns group inverse.
///
SOPHUS_FUNC RxSO3<Scalar> inverse() const {
return RxSO3<Scalar>(quaternion().inverse());
}
/// Logarithmic map
///
/// Computes the logarithm, the inverse of the group exponential which maps
/// element of the group (scaled rotation matrices) to elements of the tangent
/// space (rotation-vector plus logarithm of scale factor).
///
/// To be specific, this function computes ``vee(logmat(.))`` with
/// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
/// of RxSO3.
///
SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; }
/// As above, but also returns ``theta = |omega|``.
///
SOPHUS_FUNC TangentAndTheta logAndTheta() const {
using std::log;
Scalar scale = quaternion().squaredNorm();
TangentAndTheta result;
result.tangent[3] = log(scale);
auto omega_and_theta = SO3<Scalar>(quaternion()).logAndTheta();
result.tangent.template head<3>() = omega_and_theta.tangent;
result.theta = omega_and_theta.theta;
return result;
}
/// Returns 3x3 matrix representation of the instance.
///
/// For RxSO3, the matrix representation is an scaled orthogonal matrix ``sR``
/// with ``det(R)=s^3``, thus a scaled rotation matrix ``R`` with scale
/// ``s``.
///
SOPHUS_FUNC Transformation matrix() const {
Transformation sR;
Scalar const vx_sq = quaternion().vec().x() * quaternion().vec().x();
Scalar const vy_sq = quaternion().vec().y() * quaternion().vec().y();
Scalar const vz_sq = quaternion().vec().z() * quaternion().vec().z();
Scalar const w_sq = quaternion().w() * quaternion().w();
Scalar const two_vx = Scalar(2) * quaternion().vec().x();
Scalar const two_vy = Scalar(2) * quaternion().vec().y();
Scalar const two_vz = Scalar(2) * quaternion().vec().z();
Scalar const two_vx_vy = two_vx * quaternion().vec().y();
Scalar const two_vx_vz = two_vx * quaternion().vec().z();
Scalar const two_vx_w = two_vx * quaternion().w();
Scalar const two_vy_vz = two_vy * quaternion().vec().z();
Scalar const two_vy_w = two_vy * quaternion().w();
Scalar const two_vz_w = two_vz * quaternion().w();
sR(0, 0) = vx_sq - vy_sq - vz_sq + w_sq;
sR(1, 0) = two_vx_vy + two_vz_w;
sR(2, 0) = two_vx_vz - two_vy_w;
sR(0, 1) = two_vx_vy - two_vz_w;
sR(1, 1) = -vx_sq + vy_sq - vz_sq + w_sq;
sR(2, 1) = two_vx_w + two_vy_vz;
sR(0, 2) = two_vx_vz + two_vy_w;
sR(1, 2) = -two_vx_w + two_vy_vz;
sR(2, 2) = -vx_sq - vy_sq + vz_sq + w_sq;
return sR;
}
/// Assignment-like operator from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC RxSO3Base<Derived>& operator=(
RxSO3Base<OtherDerived> const& other) {
quaternion_nonconst() = other.quaternion();
return *this;
}
/// Group multiplication, which is rotation concatenation and scale
/// multiplication.
///
/// Note: This function performs saturation for products close to zero in
/// order to ensure the class invariant.
///
template <typename OtherDerived>
SOPHUS_FUNC RxSO3Product<OtherDerived> operator*(
RxSO3Base<OtherDerived> const& other) const {
using ResultT = ReturnScalar<OtherDerived>;
typename RxSO3Product<OtherDerived>::QuaternionType result_quaternion(
quaternion() * other.quaternion());
ResultT scale = result_quaternion.squaredNorm();
if (scale < Constants<ResultT>::epsilon()) {
SOPHUS_ENSURE(scale > ResultT(0), "Scale must be greater zero.");
/// Saturation to ensure class invariant.
result_quaternion.normalize();
result_quaternion.coeffs() *= sqrt(Constants<Scalar>::epsilon());
}
return RxSO3Product<OtherDerived>(result_quaternion);
}
/// Group action on 3-points.
///
/// This function rotates a 3 dimensional point ``p`` by the SO3 element
/// ``bar_R_foo`` (= rotation matrix) and scales it by the scale factor
/// ``s``:
///
/// ``p_bar = s * (bar_R_foo * p_foo)``.
///
template <typename PointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<PointDerived, 3>::value>::type>
SOPHUS_FUNC PointProduct<PointDerived> operator*(
Eigen::MatrixBase<PointDerived> const& p) const {
// Follows http:///eigen.tuxfamily.org/bz/show_bug.cgi?id=459
Scalar scale = quaternion().squaredNorm();
PointProduct<PointDerived> two_vec_cross_p = quaternion().vec().cross(p);
two_vec_cross_p += two_vec_cross_p;
return scale * p + (quaternion().w() * two_vec_cross_p +
quaternion().vec().cross(two_vec_cross_p));
}
/// Group action on homogeneous 3-points. See above for more details.
///
template <typename HPointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<HPointDerived, 4>::value>::type>
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
Eigen::MatrixBase<HPointDerived> const& p) const {
const auto rsp = *this * p.template head<3>();
return HomogeneousPointProduct<HPointDerived>(rsp(0), rsp(1), rsp(2), p(3));
}
/// Group action on lines.
///
/// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO3
/// element ans scales it by the scale factor:
///
/// Origin ``o`` is rotated and scaled
/// Direction ``d`` is rotated (preserving it's norm)
///
SOPHUS_FUNC Line operator*(Line const& l) const {
return Line((*this) * l.origin(),
(*this) * l.direction() / quaternion().squaredNorm());
}
/// In-place group multiplication. This method is only valid if the return
/// type of the multiplication is compatible with this SO3's Scalar type.
///
/// Note: This function performs saturation for products close to zero in
/// order to ensure the class invariant.
///
template <typename OtherDerived,
typename = typename std::enable_if<
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
SOPHUS_FUNC RxSO3Base<Derived>& operator*=(
RxSO3Base<OtherDerived> const& other) {
*static_cast<Derived*>(this) = *this * other;
return *this;
}
/// Returns internal parameters of RxSO(3).
///
/// It returns (q.imag[0], q.imag[1], q.imag[2], q.real), with q being the
/// quaternion.
///
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
return quaternion().coeffs();
}
/// Sets non-zero quaternion
///
/// Precondition: ``quat`` must not be close to zero.
SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quat) {
SOPHUS_ENSURE(quat.squaredNorm() > Constants<Scalar>::epsilon() *
Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
static_cast<Derived*>(this)->quaternion_nonconst() = quat;
}
/// Accessor of quaternion.
///
SOPHUS_FUNC QuaternionType const& quaternion() const {
return static_cast<Derived const*>(this)->quaternion();
}
/// Returns rotation matrix.
///
SOPHUS_FUNC Transformation rotationMatrix() const {
QuaternionTemporaryType norm_quad = quaternion();
norm_quad.normalize();
return norm_quad.toRotationMatrix();
}
/// Returns scale.
///
SOPHUS_FUNC
Scalar scale() const { return quaternion().squaredNorm(); }
/// Setter of quaternion using rotation matrix ``R``, leaves scale as is.
///
SOPHUS_FUNC void setRotationMatrix(Transformation const& R) {
using std::sqrt;
Scalar saved_scale = scale();
quaternion_nonconst() = R;
quaternion_nonconst().coeffs() *= sqrt(saved_scale);
}
/// Sets scale and leaves rotation as is.
///
/// Note: This function as a significant computational cost, since it has to
/// call the square root twice.
///
SOPHUS_FUNC
void setScale(Scalar const& scale) {
using std::sqrt;
quaternion_nonconst().normalize();
quaternion_nonconst().coeffs() *= sqrt(scale);
}
/// Setter of quaternion using scaled rotation matrix ``sR``.
///
/// Precondition: The 3x3 matrix must be "scaled orthogonal"
/// and have a positive determinant.
///
SOPHUS_FUNC void setScaledRotationMatrix(Transformation const& sR) {
Transformation squared_sR = sR * sR.transpose();
Scalar squared_scale =
Scalar(1. / 3.) *
(squared_sR(0, 0) + squared_sR(1, 1) + squared_sR(2, 2));
SOPHUS_ENSURE(squared_scale >= Constants<Scalar>::epsilon() *
Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
Scalar scale = sqrt(squared_scale);
quaternion_nonconst() = sR / scale;
quaternion_nonconst().coeffs() *= sqrt(scale);
}
/// Setter of SO(3) rotations, leaves scale as is.
///
SOPHUS_FUNC void setSO3(SO3<Scalar> const& so3) {
using std::sqrt;
Scalar saved_scale = scale();
quaternion_nonconst() = so3.unit_quaternion();
quaternion_nonconst().coeffs() *= sqrt(saved_scale);
}
SOPHUS_FUNC SO3<Scalar> so3() const { return SO3<Scalar>(quaternion()); }
private:
/// Mutator of quaternion is private to ensure class invariant.
///
SOPHUS_FUNC QuaternionType& quaternion_nonconst() {
return static_cast<Derived*>(this)->quaternion_nonconst();
}
};
/// RxSO3 using storage; derived from RxSO3Base.
template <class Scalar_, int Options>
class RxSO3 : public RxSO3Base<RxSO3<Scalar_, Options>> {
public:
using Base = RxSO3Base<RxSO3<Scalar_, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using QuaternionMember = Eigen::Quaternion<Scalar, Options>;
/// ``Base`` is friend so quaternion_nonconst can be accessed from ``Base``.
friend class RxSO3Base<RxSO3<Scalar_, Options>>;
using Base::operator=;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// Default constructor initializes quaternion to identity rotation and scale
/// to 1.
///
SOPHUS_FUNC RxSO3()
: quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {}
/// Copy constructor
///
SOPHUS_FUNC RxSO3(RxSO3 const& other) = default;
/// Copy-like constructor from OtherDerived
///
template <class OtherDerived>
SOPHUS_FUNC RxSO3(RxSO3Base<OtherDerived> const& other)
: quaternion_(other.quaternion()) {}
/// Constructor from scaled rotation matrix
///
/// Precondition: rotation matrix need to be scaled orthogonal with
/// determinant of ``s^3``.
///
SOPHUS_FUNC explicit RxSO3(Transformation const& sR) {
this->setScaledRotationMatrix(sR);
}
/// Constructor from scale factor and rotation matrix ``R``.
///
/// Precondition: Rotation matrix ``R`` must to be orthogonal with determinant
/// of 1 and ``scale`` must not be close to zero.
///
SOPHUS_FUNC RxSO3(Scalar const& scale, Transformation const& R)
: quaternion_(R) {
SOPHUS_ENSURE(scale >= Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
using std::sqrt;
quaternion_.coeffs() *= sqrt(scale);
}
/// Constructor from scale factor and SO3
///
/// Precondition: ``scale`` must not to be close to zero.
///
SOPHUS_FUNC RxSO3(Scalar const& scale, SO3<Scalar> const& so3)
: quaternion_(so3.unit_quaternion()) {
SOPHUS_ENSURE(scale >= Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
using std::sqrt;
quaternion_.coeffs() *= sqrt(scale);
}
/// Constructor from quaternion
///
/// Precondition: quaternion must not be close to zero.
///
template <class D>
SOPHUS_FUNC explicit RxSO3(Eigen::QuaternionBase<D> const& quat)
: quaternion_(quat) {
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
"must be same Scalar type.");
SOPHUS_ENSURE(quaternion_.squaredNorm() >= Constants<Scalar>::epsilon(),
"Scale factor must be greater-equal epsilon.");
}
/// Accessor of quaternion.
///
SOPHUS_FUNC QuaternionMember const& quaternion() const { return quaternion_; }
/// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
///
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
return generator(i);
}
/// Group exponential
///
/// This functions takes in an element of tangent space (= rotation 3-vector
/// plus logarithm of scale) and returns the corresponding element of the
/// group RxSO3.
///
/// To be more specific, thixs function computes ``expmat(hat(omega))``
/// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
/// hat()-operator of RSO3.
///
SOPHUS_FUNC static RxSO3<Scalar> exp(Tangent const& a) {
Scalar theta;
return expAndTheta(a, &theta);
}
/// As above, but also returns ``theta = |omega|`` as out-parameter.
///
/// Precondition: ``theta`` must not be ``nullptr``.
///
SOPHUS_FUNC static RxSO3<Scalar> expAndTheta(Tangent const& a,
Scalar* theta) {
SOPHUS_ENSURE(theta != nullptr, "must not be nullptr.");
using std::exp;
using std::sqrt;
Vector3<Scalar> const omega = a.template head<3>();
Scalar sigma = a[3];
Scalar sqrt_scale = sqrt(exp(sigma));
Eigen::Quaternion<Scalar> quat =
SO3<Scalar>::expAndTheta(omega, theta).unit_quaternion();
quat.coeffs() *= sqrt_scale;
return RxSO3<Scalar>(quat);
}
/// Returns the ith infinitesimal generators of ``R+ x SO(3)``.
///
/// The infinitesimal generators of RxSO3 are:
///
/// ```
/// | 0 0 0 |
/// G_0 = | 0 0 -1 |
/// | 0 1 0 |
///
/// | 0 0 1 |
/// G_1 = | 0 0 0 |
/// | -1 0 0 |
///
/// | 0 -1 0 |
/// G_2 = | 1 0 0 |
/// | 0 0 0 |
///
/// | 1 0 0 |
/// G_2 = | 0 1 0 |
/// | 0 0 1 |
/// ```
///
/// Precondition: ``i`` must be 0, 1, 2 or 3.
///
SOPHUS_FUNC static Transformation generator(int i) {
SOPHUS_ENSURE(i >= 0 && i <= 3, "i should be in range [0,3].");
Tangent e;
e.setZero();
e[i] = Scalar(1);
return hat(e);
}
/// hat-operator
///
/// It takes in the 4-vector representation ``a`` (= rotation vector plus
/// logarithm of scale) and returns the corresponding matrix representation
/// of Lie algebra element.
///
/// Formally, the hat()-operator of RxSO3 is defined as
///
/// ``hat(.): R^4 -> R^{3x3}, hat(a) = sum_i a_i * G_i`` (for i=0,1,2,3)
///
/// with ``G_i`` being the ith infinitesimal generator of RxSO3.
///
/// The corresponding inverse is the vee()-operator, see below.
///
SOPHUS_FUNC static Transformation hat(Tangent const& a) {
Transformation A;
// clang-format off
A << a(3), -a(2), a(1),
a(2), a(3), -a(0),
-a(1), a(0), a(3);
// clang-format on
return A;
}
/// Lie bracket
///
/// It computes the Lie bracket of RxSO(3). To be more specific, it computes
///
/// ``[omega_1, omega_2]_rxso3 := vee([hat(omega_1), hat(omega_2)])``
///
/// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
/// hat()-operator and ``vee(.)`` the vee()-operator of RxSO3.
///
SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
Vector3<Scalar> const omega1 = a.template head<3>();
Vector3<Scalar> const omega2 = b.template head<3>();
Vector4<Scalar> res;
res.template head<3>() = omega1.cross(omega2);
res[3] = Scalar(0);
return res;
}
/// Draw uniform sample from RxSO(3) manifold.
///
/// The scale factor is drawn uniformly in log2-space from [-1, 1],
/// hence the scale is in [0.5, 2].
///
template <class UniformRandomBitGenerator>
static RxSO3 sampleUniform(UniformRandomBitGenerator& generator) {
std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
using std::exp2;
return RxSO3(exp2(uniform(generator)),
SO3<Scalar>::sampleUniform(generator));
}
/// vee-operator
///
/// It takes the 3x3-matrix representation ``Omega`` and maps it to the
/// corresponding vector representation of Lie algebra.
///
/// This is the inverse of the hat()-operator, see above.
///
/// Precondition: ``Omega`` must have the following structure:
///
/// | d -c b |
/// | c d -a |
/// | -b a d |
///
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
using std::abs;
return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0), Omega(0, 0));
}
protected:
SOPHUS_FUNC QuaternionMember& quaternion_nonconst() { return quaternion_; }
QuaternionMember quaternion_;
};
} // namespace Sophus
namespace Eigen {
/// Specialization of Eigen::Map for ``RxSO3``; derived from RxSO3Base
///
/// Allows us to wrap RxSO3 objects around POD array (e.g. external c style
/// quaternion).
template <class Scalar_, int Options>
class Map<Sophus::RxSO3<Scalar_>, Options>
: public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>> {
public:
using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
/// ``Base`` is friend so quaternion_nonconst can be accessed from ``Base``.
friend class Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
using Base::operator=;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC Map(Scalar* coeffs) : quaternion_(coeffs) {}
/// Accessor of quaternion.
///
SOPHUS_FUNC
Map<Eigen::Quaternion<Scalar>, Options> const& quaternion() const {
return quaternion_;
}
protected:
SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options>& quaternion_nonconst() {
return quaternion_;
}
Map<Eigen::Quaternion<Scalar>, Options> quaternion_;
};
/// Specialization of Eigen::Map for ``RxSO3 const``; derived from RxSO3Base.
///
/// Allows us to wrap RxSO3 objects around POD array (e.g. external c style
/// quaternion).
template <class Scalar_, int Options>
class Map<Sophus::RxSO3<Scalar_> const, Options>
: public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>> {
public:
using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC
Map(Scalar const* coeffs) : quaternion_(coeffs) {}
/// Accessor of quaternion.
///
SOPHUS_FUNC
Map<Eigen::Quaternion<Scalar> const, Options> const& quaternion() const {
return quaternion_;
}
protected:
Map<Eigen::Quaternion<Scalar> const, Options> const quaternion_;
};
} // namespace Eigen
#endif /// SOPHUS_RXSO3_HPP