/// @file /// Special orthogonal group SO(3) - rotation in 3d. #ifndef SOPHUS_SO3_HPP #define SOPHUS_SO3_HPP #include "rotation_matrix.hpp" #include "so2.hpp" #include "types.hpp" // Include only the selective set of Eigen headers that we need. // This helps when using Sophus with unusual compilers, like nvcc. #include #include #include namespace Sophus { template class SO3; using SO3d = SO3; using SO3f = SO3; } // namespace Sophus namespace Eigen { namespace internal { template struct traits> { static constexpr int Options = Options_; using Scalar = Scalar_; using QuaternionType = Eigen::Quaternion; }; template struct traits, Options_>> : traits> { static constexpr int Options = Options_; using Scalar = Scalar_; using QuaternionType = Map, Options>; }; template struct traits const, Options_>> : traits const> { static constexpr int Options = Options_; using Scalar = Scalar_; using QuaternionType = Map const, Options>; }; } // namespace internal } // namespace Eigen namespace Sophus { /// SO3 base type - implements SO3 class but is storage agnostic. /// /// SO(3) is the group of rotations in 3d. As a matrix group, it is the set of /// matrices which are orthogonal such that ``R * R' = I`` (with ``R'`` being /// the transpose of ``R``) and have a positive determinant. In particular, the /// determinant is 1. Internally, the group is represented as a unit quaternion. /// Unit quaternion can be seen as members of the special unitary group SU(2). /// SU(2) is a double cover of SO(3). Hence, for every rotation matrix ``R``, /// there exist two unit quaternions: ``(r, v)`` and ``(-r, -v)``, with ``r`` /// the real part and ``v`` being the imaginary 3-vector part of the quaternion. /// /// SO(3) is a compact, but non-commutative group. First it is compact since the /// set of rotation matrices is a closed and bounded set. Second it is /// non-commutative since the equation ``R_1 * R_2 = R_2 * R_1`` does not hold /// in general. For example rotating an object by some degrees about its /// ``x``-axis and then by some degrees about its y axis, does not lead to the /// same orientation when rotation first about ``y`` and then about ``x``. /// /// Class invariant: The 2-norm of ``unit_quaternion`` must be close to 1. /// Technically speaking, it must hold that: /// /// ``|unit_quaternion().squaredNorm() - 1| <= Constants::epsilon()``. template class SO3Base { public: static constexpr int Options = Eigen::internal::traits::Options; using Scalar = typename Eigen::internal::traits::Scalar; using QuaternionType = typename Eigen::internal::traits::QuaternionType; using QuaternionTemporaryType = Eigen::Quaternion; /// Degrees of freedom of group, number of dimensions in tangent space. static int constexpr DoF = 3; /// Number of internal parameters used (quaternion is a 4-tuple). static int constexpr num_parameters = 4; /// Group transformations are 3x3 matrices. static int constexpr N = 3; using Transformation = Matrix; using Point = Vector3; using HomogeneousPoint = Vector4; using Line = ParametrizedLine3; using Tangent = Vector; using Adjoint = Matrix; struct TangentAndTheta { EIGEN_MAKE_ALIGNED_OPERATOR_NEW Tangent tangent; Scalar theta; }; /// For binary operations the return type is determined with the /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map /// types, as well as other compatible scalar types such as Ceres::Jet and /// double scalars with SO3 operations. template using ReturnScalar = typename Eigen::ScalarBinaryOpTraits< Scalar, typename OtherDerived::Scalar>::ReturnType; template using SO3Product = SO3>; template using PointProduct = Vector3>; template using HomogeneousPointProduct = Vector4>; /// Adjoint transformation // /// This function return the adjoint transformation ``Ad`` of the group /// element ``A`` such that for all ``x`` it holds that /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below. // /// For SO(3), it simply returns the rotation matrix corresponding to ``A``. /// SOPHUS_FUNC Adjoint Adj() const { return matrix(); } /// Extract rotation angle about canonical X-axis /// template SOPHUS_FUNC enable_if_t::value, S> angleX() const { Sophus::Matrix3 R = matrix(); Sophus::Matrix2 Rx = R.template block<2, 2>(1, 1); return SO2(makeRotationMatrix(Rx)).log(); } /// Extract rotation angle about canonical Y-axis /// template SOPHUS_FUNC enable_if_t::value, S> angleY() const { Sophus::Matrix3 R = matrix(); Sophus::Matrix2 Ry; // clang-format off Ry << R(0, 0), R(2, 0), R(0, 2), R(2, 2); // clang-format on return SO2(makeRotationMatrix(Ry)).log(); } /// Extract rotation angle about canonical Z-axis /// template SOPHUS_FUNC enable_if_t::value, S> angleZ() const { Sophus::Matrix3 R = matrix(); Sophus::Matrix2 Rz = R.template block<2, 2>(0, 0); return SO2(makeRotationMatrix(Rz)).log(); } /// Returns copy of instance casted to NewScalarType. /// template SOPHUS_FUNC SO3 cast() const { return SO3(unit_quaternion().template cast()); } /// This provides unsafe read/write access to internal data. SO(3) is /// represented by an Eigen::Quaternion (four parameters). When using direct /// write access, the user needs to take care of that the quaternion stays /// normalized. /// /// Note: The first three Scalars represent the imaginary parts, while the /// forth Scalar represent the real part. /// SOPHUS_FUNC Scalar* data() { return unit_quaternion_nonconst().coeffs().data(); } /// Const version of data() above. /// SOPHUS_FUNC Scalar const* data() const { return unit_quaternion().coeffs().data(); } /// Returns derivative of this * SO3::exp(x) wrt. x at x=0. /// SOPHUS_FUNC Matrix Dx_this_mul_exp_x_at_0() const { Matrix J; Eigen::Quaternion const q = unit_quaternion(); Scalar const c0 = Scalar(0.5) * q.w(); Scalar const c1 = Scalar(0.5) * q.z(); Scalar const c2 = -c1; Scalar const c3 = Scalar(0.5) * q.y(); Scalar const c4 = Scalar(0.5) * q.x(); Scalar const c5 = -c4; Scalar const c6 = -c3; J(0, 0) = c0; J(0, 1) = c2; J(0, 2) = c3; J(1, 0) = c1; J(1, 1) = c0; J(1, 2) = c5; J(2, 0) = c6; J(2, 1) = c4; J(2, 2) = c0; J(3, 0) = c5; J(3, 1) = c6; J(3, 2) = c2; return J; } /// Returns internal parameters of SO(3). /// /// It returns (q.imag[0], q.imag[1], q.imag[2], q.real), with q being the /// unit quaternion. /// SOPHUS_FUNC Sophus::Vector params() const { return unit_quaternion().coeffs(); } /// Returns group inverse. /// SOPHUS_FUNC SO3 inverse() const { return SO3(unit_quaternion().conjugate()); } /// Logarithmic map /// /// Computes the logarithm, the inverse of the group exponential which maps /// element of the group (rotation matrices) to elements of the tangent space /// (rotation-vector). /// /// To be specific, this function computes ``vee(logmat(.))`` with /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator /// of SO(3). /// SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; } /// As above, but also returns ``theta = |omega|``. /// SOPHUS_FUNC TangentAndTheta logAndTheta() const { TangentAndTheta J; using std::abs; using std::atan; using std::sqrt; Scalar squared_n = unit_quaternion().vec().squaredNorm(); Scalar w = unit_quaternion().w(); Scalar two_atan_nbyw_by_n; /// Atan-based log thanks to /// /// C. Hertzberg et al.: /// "Integrating Generic Sensor Fusion Algorithms with Sound State /// Representation through Encapsulation of Manifolds" /// Information Fusion, 2011 if (squared_n < Constants::epsilon() * Constants::epsilon()) { // If quaternion is normalized and n=0, then w should be 1; // w=0 should never happen here! SOPHUS_ENSURE(abs(w) >= Constants::epsilon(), "Quaternion (%) should be normalized!", unit_quaternion().coeffs().transpose()); Scalar squared_w = w * w; two_atan_nbyw_by_n = Scalar(2) / w - Scalar(2.0/3.0) * (squared_n) / (w * squared_w); J.theta = Scalar(2) * squared_n / w; } else { Scalar n = sqrt(squared_n); if (abs(w) < Constants::epsilon()) { if (w > Scalar(0)) { two_atan_nbyw_by_n = Constants::pi() / n; } else { two_atan_nbyw_by_n = -Constants::pi() / n; } } else { two_atan_nbyw_by_n = Scalar(2) * atan(n / w) / n; } J.theta = two_atan_nbyw_by_n * n; } J.tangent = two_atan_nbyw_by_n * unit_quaternion().vec(); return J; } /// It re-normalizes ``unit_quaternion`` to unit length. /// /// Note: Because of the class invariant, there is typically no need to call /// this function directly. /// SOPHUS_FUNC void normalize() { Scalar length = unit_quaternion_nonconst().norm(); SOPHUS_ENSURE(length >= Constants::epsilon(), "Quaternion (%) should not be close to zero!", unit_quaternion_nonconst().coeffs().transpose()); unit_quaternion_nonconst().coeffs() /= length; } /// Returns 3x3 matrix representation of the instance. /// /// For SO(3), the matrix representation is an orthogonal matrix ``R`` with /// ``det(R)=1``, thus the so-called "rotation matrix". /// SOPHUS_FUNC Transformation matrix() const { return unit_quaternion().toRotationMatrix(); } /// Assignment-like operator from OtherDerived. /// template SOPHUS_FUNC SO3Base& operator=(SO3Base const& other) { unit_quaternion_nonconst() = other.unit_quaternion(); return *this; } /// Group multiplication, which is rotation concatenation. /// template SOPHUS_FUNC SO3Product operator*( SO3Base const& other) const { using QuaternionProductType = typename SO3Product::QuaternionType; const QuaternionType& a = unit_quaternion(); const typename OtherDerived::QuaternionType& b = other.unit_quaternion(); /// NOTE: We cannot use Eigen's Quaternion multiplication because it always /// returns a Quaternion of the same Scalar as this object, so it is not /// able to multiple Jets and doubles correctly. return SO3Product(QuaternionProductType( a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x())); } /// Group action on 3-points. /// /// This function rotates a 3 dimensional point ``p`` by the SO3 element /// ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``. /// /// Since SO3 is internally represented by a unit quaternion ``q``, it is /// implemented as ``p_bar = q * p_foo * q^{*}`` /// with ``q^{*}`` being the quaternion conjugate of ``q``. /// /// Geometrically, ``p`` is rotated by angle ``|omega|`` around the /// axis ``omega/|omega|`` with ``omega := vee(log(bar_R_foo))``. /// /// For ``vee``-operator, see below. /// template ::value>::type> SOPHUS_FUNC PointProduct operator*( Eigen::MatrixBase const& p) const { /// NOTE: We cannot use Eigen's Quaternion transformVector because it always /// returns a Vector3 of the same Scalar as this quaternion, so it is not /// able to be applied to Jets and doubles correctly. const QuaternionType& q = unit_quaternion(); PointProduct uv = q.vec().cross(p); uv += uv; return p + q.w() * uv + q.vec().cross(uv); } /// Group action on homogeneous 3-points. See above for more details. template ::value>::type> SOPHUS_FUNC HomogeneousPointProduct operator*( Eigen::MatrixBase const& p) const { const auto rp = *this * p.template head<3>(); return HomogeneousPointProduct(rp(0), rp(1), rp(2), p(3)); } /// Group action on lines. /// /// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO3 /// element: /// /// Both direction ``d`` and origin ``o`` are rotated as a 3 dimensional point /// SOPHUS_FUNC Line operator*(Line const& l) const { return Line((*this) * l.origin(), (*this) * l.direction()); } /// In-place group multiplication. This method is only valid if the return /// type of the multiplication is compatible with this SO3's Scalar type. /// template >::value>::type> SOPHUS_FUNC SO3Base& operator*=(SO3Base const& other) { *static_cast(this) = *this * other; return *this; } /// Takes in quaternion, and normalizes it. /// /// Precondition: The quaternion must not be close to zero. /// SOPHUS_FUNC void setQuaternion(Eigen::Quaternion const& quaternion) { unit_quaternion_nonconst() = quaternion; normalize(); } /// Accessor of unit quaternion. /// SOPHUS_FUNC QuaternionType const& unit_quaternion() const { return static_cast(this)->unit_quaternion(); } private: /// Mutator of unit_quaternion is private to ensure class invariant. That is /// the quaternion must stay close to unit length. /// SOPHUS_FUNC QuaternionType& unit_quaternion_nonconst() { return static_cast(this)->unit_quaternion_nonconst(); } }; /// SO3 using default storage; derived from SO3Base. template class SO3 : public SO3Base> { public: using Base = SO3Base>; static int constexpr DoF = Base::DoF; static int constexpr num_parameters = Base::num_parameters; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using QuaternionMember = Eigen::Quaternion; /// ``Base`` is friend so unit_quaternion_nonconst can be accessed from /// ``Base``. friend class SO3Base>; using Base::operator=; EIGEN_MAKE_ALIGNED_OPERATOR_NEW /// Default constructor initializes unit quaternion to identity rotation. /// SOPHUS_FUNC SO3() : unit_quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {} /// Copy constructor /// SOPHUS_FUNC SO3(SO3 const& other) = default; /// Copy-like constructor from OtherDerived. /// template SOPHUS_FUNC SO3(SO3Base const& other) : unit_quaternion_(other.unit_quaternion()) {} /// Constructor from rotation matrix /// /// Precondition: rotation matrix needs to be orthogonal with determinant /// of 1. /// SOPHUS_FUNC SO3(Transformation const& R) : unit_quaternion_(R) { SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %", R * R.transpose()); SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %", R.determinant()); } /// Constructor from quaternion /// /// Precondition: quaternion must not be close to zero. /// template SOPHUS_FUNC explicit SO3(Eigen::QuaternionBase const& quat) : unit_quaternion_(quat) { static_assert( std::is_same::Scalar, Scalar>::value, "Input must be of same scalar type"); Base::normalize(); } /// Accessor of unit quaternion. /// SOPHUS_FUNC QuaternionMember const& unit_quaternion() const { return unit_quaternion_; } /// Returns derivative of exp(x) wrt. x. /// SOPHUS_FUNC static Sophus::Matrix Dx_exp_x( Tangent const& omega) { using std::cos; using std::exp; using std::sin; using std::sqrt; Scalar const c0 = omega[0] * omega[0]; Scalar const c1 = omega[1] * omega[1]; Scalar const c2 = omega[2] * omega[2]; Scalar const c3 = c0 + c1 + c2; if (c3 < Constants::epsilon()) { return Dx_exp_x_at_0(); } Scalar const c4 = sqrt(c3); Scalar const c5 = 1.0 / c4; Scalar const c6 = 0.5 * c4; Scalar const c7 = sin(c6); Scalar const c8 = c5 * c7; Scalar const c9 = pow(c3, -3.0L / 2.0L); Scalar const c10 = c7 * c9; Scalar const c11 = Scalar(1.0) / c3; Scalar const c12 = cos(c6); Scalar const c13 = Scalar(0.5) * c11 * c12; Scalar const c14 = c7 * c9 * omega[0]; Scalar const c15 = Scalar(0.5) * c11 * c12 * omega[0]; Scalar const c16 = -c14 * omega[1] + c15 * omega[1]; Scalar const c17 = -c14 * omega[2] + c15 * omega[2]; Scalar const c18 = omega[1] * omega[2]; Scalar const c19 = -c10 * c18 + c13 * c18; Scalar const c20 = Scalar(0.5) * c5 * c7; Sophus::Matrix J; J(0, 0) = -c0 * c10 + c0 * c13 + c8; J(0, 1) = c16; J(0, 2) = c17; J(1, 0) = c16; J(1, 1) = -c1 * c10 + c1 * c13 + c8; J(1, 2) = c19; J(2, 0) = c17; J(2, 1) = c19; J(2, 2) = -c10 * c2 + c13 * c2 + c8; J(3, 0) = -c20 * omega[0]; J(3, 1) = -c20 * omega[1]; J(3, 2) = -c20 * omega[2]; return J; } /// Returns derivative of exp(x) wrt. x_i at x=0. /// SOPHUS_FUNC static Sophus::Matrix Dx_exp_x_at_0() { Sophus::Matrix J; // clang-format off J << Scalar(0.5), Scalar(0), Scalar(0), Scalar(0), Scalar(0.5), Scalar(0), Scalar(0), Scalar(0), Scalar(0.5), Scalar(0), Scalar(0), Scalar(0); // clang-format on return J; } /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``. /// SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) { return generator(i); } /// Group exponential /// /// This functions takes in an element of tangent space (= rotation vector /// ``omega``) and returns the corresponding element of the group SO(3). /// /// To be more specific, this function computes ``expmat(hat(omega))`` /// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the /// hat()-operator of SO(3). /// SOPHUS_FUNC static SO3 exp(Tangent const& omega) { Scalar theta; return expAndTheta(omega, &theta); } /// As above, but also returns ``theta = |omega|`` as out-parameter. /// /// Precondition: ``theta`` must not be ``nullptr``. /// SOPHUS_FUNC static SO3 expAndTheta(Tangent const& omega, Scalar* theta) { SOPHUS_ENSURE(theta != nullptr, "must not be nullptr."); using std::abs; using std::cos; using std::sin; using std::sqrt; Scalar theta_sq = omega.squaredNorm(); Scalar imag_factor; Scalar real_factor; if (theta_sq < Constants::epsilon() * Constants::epsilon()) { *theta = Scalar(0); Scalar theta_po4 = theta_sq * theta_sq; imag_factor = Scalar(0.5) - Scalar(1.0 / 48.0) * theta_sq + Scalar(1.0 / 3840.0) * theta_po4; real_factor = Scalar(1) - Scalar(1.0 / 8.0) * theta_sq + Scalar(1.0 / 384.0) * theta_po4; } else { *theta = sqrt(theta_sq); Scalar half_theta = Scalar(0.5) * (*theta); Scalar sin_half_theta = sin(half_theta); imag_factor = sin_half_theta / (*theta); real_factor = cos(half_theta); } SO3 q; q.unit_quaternion_nonconst() = QuaternionMember(real_factor, imag_factor * omega.x(), imag_factor * omega.y(), imag_factor * omega.z()); SOPHUS_ENSURE(abs(q.unit_quaternion().squaredNorm() - Scalar(1)) < Sophus::Constants::epsilon(), "SO3::exp failed! omega: %, real: %, img: %", omega.transpose(), real_factor, imag_factor); return q; } /// Returns closest SO3 given arbitrary 3x3 matrix. /// template static SOPHUS_FUNC enable_if_t::value, SO3> fitToSO3(Transformation const& R) { return SO3(::Sophus::makeRotationMatrix(R)); } /// Returns the ith infinitesimal generators of SO(3). /// /// The infinitesimal generators of SO(3) are: /// /// ``` /// | 0 0 0 | /// G_0 = | 0 0 -1 | /// | 0 1 0 | /// /// | 0 0 1 | /// G_1 = | 0 0 0 | /// | -1 0 0 | /// /// | 0 -1 0 | /// G_2 = | 1 0 0 | /// | 0 0 0 | /// ``` /// /// Precondition: ``i`` must be 0, 1 or 2. /// SOPHUS_FUNC static Transformation generator(int i) { SOPHUS_ENSURE(i >= 0 && i <= 2, "i should be in range [0,2]."); Tangent e; e.setZero(); e[i] = Scalar(1); return hat(e); } /// hat-operator /// /// It takes in the 3-vector representation ``omega`` (= rotation vector) and /// returns the corresponding matrix representation of Lie algebra element. /// /// Formally, the hat()-operator of SO(3) is defined as /// /// ``hat(.): R^3 -> R^{3x3}, hat(omega) = sum_i omega_i * G_i`` /// (for i=0,1,2) /// /// with ``G_i`` being the ith infinitesimal generator of SO(3). /// /// The corresponding inverse is the vee()-operator, see below. /// SOPHUS_FUNC static Transformation hat(Tangent const& omega) { Transformation Omega; // clang-format off Omega << Scalar(0), -omega(2), omega(1), omega(2), Scalar(0), -omega(0), -omega(1), omega(0), Scalar(0); // clang-format on return Omega; } /// Lie bracket /// /// It computes the Lie bracket of SO(3). To be more specific, it computes /// /// ``[omega_1, omega_2]_so3 := vee([hat(omega_1), hat(omega_2)])`` /// /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the /// hat()-operator and ``vee(.)`` the vee()-operator of SO3. /// /// For the Lie algebra so3, the Lie bracket is simply the cross product: /// /// ``[omega_1, omega_2]_so3 = omega_1 x omega_2.`` /// SOPHUS_FUNC static Tangent lieBracket(Tangent const& omega1, Tangent const& omega2) { return omega1.cross(omega2); } /// Construct x-axis rotation. /// static SOPHUS_FUNC SO3 rotX(Scalar const& x) { return SO3::exp(Sophus::Vector3(x, Scalar(0), Scalar(0))); } /// Construct y-axis rotation. /// static SOPHUS_FUNC SO3 rotY(Scalar const& y) { return SO3::exp(Sophus::Vector3(Scalar(0), y, Scalar(0))); } /// Construct z-axis rotation. /// static SOPHUS_FUNC SO3 rotZ(Scalar const& z) { return SO3::exp(Sophus::Vector3(Scalar(0), Scalar(0), z)); } /// Draw uniform sample from SO(3) manifold. /// Based on: http://planning.cs.uiuc.edu/node198.html /// template static SO3 sampleUniform(UniformRandomBitGenerator& generator) { static_assert(IsUniformRandomBitGenerator::value, "generator must meet the UniformRandomBitGenerator concept"); std::uniform_real_distribution uniform(Scalar(0), Scalar(1)); std::uniform_real_distribution uniform_twopi( Scalar(0), 2 * Constants::pi()); const Scalar u1 = uniform(generator); const Scalar u2 = uniform_twopi(generator); const Scalar u3 = uniform_twopi(generator); const Scalar a = sqrt(1 - u1); const Scalar b = sqrt(u1); return SO3( QuaternionMember(a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3))); } /// vee-operator /// /// It takes the 3x3-matrix representation ``Omega`` and maps it to the /// corresponding vector representation of Lie algebra. /// /// This is the inverse of the hat()-operator, see above. /// /// Precondition: ``Omega`` must have the following structure: /// /// | 0 -c b | /// | c 0 -a | /// | -b a 0 | /// SOPHUS_FUNC static Tangent vee(Transformation const& Omega) { return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0)); } protected: /// Mutator of unit_quaternion is protected to ensure class invariant. /// SOPHUS_FUNC QuaternionMember& unit_quaternion_nonconst() { return unit_quaternion_; } QuaternionMember unit_quaternion_; }; } // namespace Sophus namespace Eigen { /// Specialization of Eigen::Map for ``SO3``; derived from SO3Base. /// /// Allows us to wrap SO3 objects around POD array (e.g. external c style /// quaternion). template class Map, Options> : public Sophus::SO3Base, Options>> { public: using Base = Sophus::SO3Base, Options>>; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; /// ``Base`` is friend so unit_quaternion_nonconst can be accessed from /// ``Base``. friend class Sophus::SO3Base, Options>>; using Base::operator=; using Base::operator*=; using Base::operator*; SOPHUS_FUNC Map(Scalar* coeffs) : unit_quaternion_(coeffs) {} /// Accessor of unit quaternion. /// SOPHUS_FUNC Map, Options> const& unit_quaternion() const { return unit_quaternion_; } protected: /// Mutator of unit_quaternion is protected to ensure class invariant. /// SOPHUS_FUNC Map, Options>& unit_quaternion_nonconst() { return unit_quaternion_; } Map, Options> unit_quaternion_; }; /// Specialization of Eigen::Map for ``SO3 const``; derived from SO3Base. /// /// Allows us to wrap SO3 objects around POD array (e.g. external c style /// quaternion). template class Map const, Options> : public Sophus::SO3Base const, Options>> { public: using Base = Sophus::SO3Base const, Options>>; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using Base::operator*=; using Base::operator*; SOPHUS_FUNC Map(Scalar const* coeffs) : unit_quaternion_(coeffs) {} /// Accessor of unit quaternion. /// SOPHUS_FUNC Map const, Options> const& unit_quaternion() const { return unit_quaternion_; } protected: /// Mutator of unit_quaternion is protected to ensure class invariant. /// Map const, Options> const unit_quaternion_; }; } // namespace Eigen #endif