#include #include "sophus/geometry.hpp" int main() { // The following demonstrates the group multiplication of rotation matrices // Create rotation matrices from rotations around the x and y and z axes: const double kPi = Sophus::Constants::pi(); Sophus::SO3d R1 = Sophus::SO3d::rotX(kPi / 4); Sophus::SO3d R2 = Sophus::SO3d::rotY(kPi / 6); Sophus::SO3d R3 = Sophus::SO3d::rotZ(-kPi / 3); std::cout << "The rotation matrices are" << std::endl; std::cout << "R1:\n" << R1.matrix() << std::endl; std::cout << "R2:\n" << R2.matrix() << std::endl; std::cout << "R3:\n" << R3.matrix() << std::endl; std::cout << "Their product R1*R2*R3:\n" << (R1 * R2 * R3).matrix() << std::endl; std::cout << std::endl; // Rotation matrices can act on vectors Eigen::Vector3d x; x << 0.0, 0.0, 1.0; std::cout << "Rotation matrices can act on vectors" << std::endl; std::cout << "x\n" << x << std::endl; std::cout << "R2*x\n" << R2 * x << std::endl; std::cout << "R1*(R2*x)\n" << R1 * (R2 * x) << std::endl; std::cout << "(R1*R2)*x\n" << (R1 * R2) * x << std::endl; std::cout << std::endl; // SO(3) are internally represented as unit quaternions. std::cout << "R1 in matrix form:\n" << R1.matrix() << std::endl; std::cout << "R1 in unit quaternion form:\n" << R1.unit_quaternion().coeffs() << std::endl; // Note that the order of coefficiences of Eigen's quaternion class is // (imag0, imag1, imag2, real) std::cout << std::endl; }