/// @file /// Special Euclidean group SE(3) - rotation and translation in 3d. #ifndef SOPHUS_SE3_HPP #define SOPHUS_SE3_HPP #include "so3.hpp" namespace Sophus { template class SE3; using SE3d = SE3; using SE3f = SE3; } // namespace Sophus namespace Eigen { namespace internal { template struct traits> { using Scalar = Scalar_; using TranslationType = Sophus::Vector3; using SO3Type = Sophus::SO3; }; template struct traits, Options>> : traits> { using Scalar = Scalar_; using TranslationType = Map, Options>; using SO3Type = Map, Options>; }; template struct traits const, Options>> : traits const> { using Scalar = Scalar_; using TranslationType = Map const, Options>; using SO3Type = Map const, Options>; }; } // namespace internal } // namespace Eigen namespace Sophus { /// SE3 base type - implements SE3 class but is storage agnostic. /// /// SE(3) is the group of rotations and translation in 3d. It is the /// semi-direct product of SO(3) and the 3d Euclidean vector space. The class /// is represented using a composition of SO3 for rotation and a one 3-vector /// for translation. /// /// SE(3) is neither compact, nor a commutative group. /// /// See SO3 for more details of the rotation representation in 3d. /// template class SE3Base { public: using Scalar = typename Eigen::internal::traits::Scalar; using TranslationType = typename Eigen::internal::traits::TranslationType; using SO3Type = typename Eigen::internal::traits::SO3Type; using QuaternionType = typename SO3Type::QuaternionType; /// Degrees of freedom of manifold, number of dimensions in tangent space /// (three for translation, three for rotation). static int constexpr DoF = 6; /// Number of internal parameters used (4-tuple for quaternion, three for /// translation). static int constexpr num_parameters = 7; /// Group transformations are 4x4 matrices. static int constexpr N = 4; using Transformation = Matrix; using Point = Vector3; using HomogeneousPoint = Vector4; using Line = ParametrizedLine3; using Tangent = Vector; using Adjoint = Matrix; /// For binary operations the return type is determined with the /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map /// types, as well as other compatible scalar types such as Ceres::Jet and /// double scalars with SE3 operations. template using ReturnScalar = typename Eigen::ScalarBinaryOpTraits< Scalar, typename OtherDerived::Scalar>::ReturnType; template using SE3Product = SE3>; template using PointProduct = Vector3>; template using HomogeneousPointProduct = Vector4>; /// Adjoint transformation /// /// This function return the adjoint transformation ``Ad`` of the group /// element ``A`` such that for all ``x`` it holds that /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below. /// SOPHUS_FUNC Adjoint Adj() const { Sophus::Matrix3 const R = so3().matrix(); Adjoint res; res.block(0, 0, 3, 3) = R; res.block(3, 3, 3, 3) = R; res.block(0, 3, 3, 3) = SO3::hat(translation()) * R; res.block(3, 0, 3, 3) = Matrix3::Zero(3, 3); return res; } /// Extract rotation angle about canonical X-axis /// Scalar angleX() const { return so3().angleX(); } /// Extract rotation angle about canonical Y-axis /// Scalar angleY() const { return so3().angleY(); } /// Extract rotation angle about canonical Z-axis /// Scalar angleZ() const { return so3().angleZ(); } /// Returns copy of instance casted to NewScalarType. /// template SOPHUS_FUNC SE3 cast() const { return SE3(so3().template cast(), translation().template cast()); } /// Returns derivative of this * exp(x) wrt x at x=0. /// SOPHUS_FUNC Matrix Dx_this_mul_exp_x_at_0() const { Matrix J; Eigen::Quaternion const q = unit_quaternion(); Scalar const c0 = Scalar(0.5) * q.w(); Scalar const c1 = Scalar(0.5) * q.z(); Scalar const c2 = -c1; Scalar const c3 = Scalar(0.5) * q.y(); Scalar const c4 = Scalar(0.5) * q.x(); Scalar const c5 = -c4; Scalar const c6 = -c3; Scalar const c7 = q.w() * q.w(); Scalar const c8 = q.x() * q.x(); Scalar const c9 = q.y() * q.y(); Scalar const c10 = -c9; Scalar const c11 = q.z() * q.z(); Scalar const c12 = -c11; Scalar const c13 = Scalar(2) * q.w(); Scalar const c14 = c13 * q.z(); Scalar const c15 = Scalar(2) * q.x(); Scalar const c16 = c15 * q.y(); Scalar const c17 = c13 * q.y(); Scalar const c18 = c15 * q.z(); Scalar const c19 = c7 - c8; Scalar const c20 = c13 * q.x(); Scalar const c21 = Scalar(2) * q.y() * q.z(); J(0, 0) = 0; J(0, 1) = 0; J(0, 2) = 0; J(0, 3) = c0; J(0, 4) = c2; J(0, 5) = c3; J(1, 0) = 0; J(1, 1) = 0; J(1, 2) = 0; J(1, 3) = c1; J(1, 4) = c0; J(1, 5) = c5; J(2, 0) = 0; J(2, 1) = 0; J(2, 2) = 0; J(2, 3) = c6; J(2, 4) = c4; J(2, 5) = c0; J(3, 0) = 0; J(3, 1) = 0; J(3, 2) = 0; J(3, 3) = c5; J(3, 4) = c6; J(3, 5) = c2; J(4, 0) = c10 + c12 + c7 + c8; J(4, 1) = -c14 + c16; J(4, 2) = c17 + c18; J(4, 3) = 0; J(4, 4) = 0; J(4, 5) = 0; J(5, 0) = c14 + c16; J(5, 1) = c12 + c19 + c9; J(5, 2) = -c20 + c21; J(5, 3) = 0; J(5, 4) = 0; J(5, 5) = 0; J(6, 0) = -c17 + c18; J(6, 1) = c20 + c21; J(6, 2) = c10 + c11 + c19; J(6, 3) = 0; J(6, 4) = 0; J(6, 5) = 0; return J; } /// Returns group inverse. /// SOPHUS_FUNC SE3 inverse() const { SO3 invR = so3().inverse(); return SE3(invR, invR * (translation() * Scalar(-1))); } /// Logarithmic map /// /// Computes the logarithm, the inverse of the group exponential which maps /// element of the group (rigid body transformations) to elements of the /// tangent space (twist). /// /// To be specific, this function computes ``vee(logmat(.))`` with /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator /// of SE(3). /// SOPHUS_FUNC Tangent log() const { // For the derivation of the logarithm of SE(3), see // J. Gallier, D. Xu, "Computing exponentials of skew symmetric matrices // and logarithms of orthogonal matrices", IJRA 2002. // https:///pdfs.semanticscholar.org/cfe3/e4b39de63c8cabd89bf3feff7f5449fc981d.pdf // (Sec. 6., pp. 8) using std::abs; using std::cos; using std::sin; Tangent upsilon_omega; auto omega_and_theta = so3().logAndTheta(); Scalar theta = omega_and_theta.theta; upsilon_omega.template tail<3>() = omega_and_theta.tangent; Matrix3 const Omega = SO3::hat(upsilon_omega.template tail<3>()); if (abs(theta) < Constants::epsilon()) { Matrix3 const V_inv = Matrix3::Identity() - Scalar(0.5) * Omega + Scalar(1. / 12.) * (Omega * Omega); upsilon_omega.template head<3>() = V_inv * translation(); } else { Scalar const half_theta = Scalar(0.5) * theta; Matrix3 const V_inv = (Matrix3::Identity() - Scalar(0.5) * Omega + (Scalar(1) - theta * cos(half_theta) / (Scalar(2) * sin(half_theta))) / (theta * theta) * (Omega * Omega)); upsilon_omega.template head<3>() = V_inv * translation(); } return upsilon_omega; } /// It re-normalizes the SO3 element. /// /// Note: Because of the class invariant of SO3, there is typically no need to /// call this function directly. /// SOPHUS_FUNC void normalize() { so3().normalize(); } /// Returns 4x4 matrix representation of the instance. /// /// It has the following form: /// /// | R t | /// | o 1 | /// /// where ``R`` is a 3x3 rotation matrix, ``t`` a translation 3-vector and /// ``o`` a 3-column vector of zeros. /// SOPHUS_FUNC Transformation matrix() const { Transformation homogenious_matrix; homogenious_matrix.template topLeftCorner<3, 4>() = matrix3x4(); homogenious_matrix.row(3) = Matrix(Scalar(0), Scalar(0), Scalar(0), Scalar(1)); return homogenious_matrix; } /// Returns the significant first three rows of the matrix above. /// SOPHUS_FUNC Matrix matrix3x4() const { Matrix matrix; matrix.template topLeftCorner<3, 3>() = rotationMatrix(); matrix.col(3) = translation(); return matrix; } /// Assignment-like operator from OtherDerived. /// template SOPHUS_FUNC SE3Base& operator=(SE3Base const& other) { so3() = other.so3(); translation() = other.translation(); return *this; } /// Group multiplication, which is rotation concatenation. /// template SOPHUS_FUNC SE3Product operator*( SE3Base const& other) const { return SE3Product( so3() * other.so3(), translation() + so3() * other.translation()); } /// Group action on 3-points. /// /// This function rotates and translates a three dimensional point ``p`` by /// the SE(3) element ``bar_T_foo = (bar_R_foo, t_bar)`` (= rigid body /// transformation): /// /// ``p_bar = bar_R_foo * p_foo + t_bar``. /// template ::value>::type> SOPHUS_FUNC PointProduct operator*( Eigen::MatrixBase const& p) const { return so3() * p + translation(); } /// Group action on homogeneous 3-points. See above for more details. /// template ::value>::type> SOPHUS_FUNC HomogeneousPointProduct operator*( Eigen::MatrixBase const& p) const { const PointProduct tp = so3() * p.template head<3>() + p(3) * translation(); return HomogeneousPointProduct(tp(0), tp(1), tp(2), p(3)); } /// Group action on lines. /// /// This function rotates and translates a parametrized line /// ``l(t) = o + t * d`` by the SE(3) element: /// /// Origin is transformed using SE(3) action /// Direction is transformed using rotation part /// SOPHUS_FUNC Line operator*(Line const& l) const { return Line((*this) * l.origin(), so3() * l.direction()); } /// In-place group multiplication. This method is only valid if the return /// type of the multiplication is compatible with this SE3's Scalar type. /// template >::value>::type> SOPHUS_FUNC SE3Base& operator*=(SE3Base const& other) { *static_cast(this) = *this * other; return *this; } /// Returns rotation matrix. /// SOPHUS_FUNC Matrix3 rotationMatrix() const { return so3().matrix(); } /// Mutator of SO3 group. /// SOPHUS_FUNC SO3Type& so3() { return static_cast(this)->so3(); } /// Accessor of SO3 group. /// SOPHUS_FUNC SO3Type const& so3() const { return static_cast(this)->so3(); } /// Takes in quaternion, and normalizes it. /// /// Precondition: The quaternion must not be close to zero. /// SOPHUS_FUNC void setQuaternion(Eigen::Quaternion const& quat) { so3().setQuaternion(quat); } /// Sets ``so3`` using ``rotation_matrix``. /// /// Precondition: ``R`` must be orthogonal and ``det(R)=1``. /// SOPHUS_FUNC void setRotationMatrix(Matrix3 const& R) { SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %", R); SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %", R.determinant()); so3().setQuaternion(Eigen::Quaternion(R)); } /// Returns internal parameters of SE(3). /// /// It returns (q.imag[0], q.imag[1], q.imag[2], q.real, t[0], t[1], t[2]), /// with q being the unit quaternion, t the translation 3-vector. /// SOPHUS_FUNC Sophus::Vector params() const { Sophus::Vector p; p << so3().params(), translation(); return p; } /// Mutator of translation vector. /// SOPHUS_FUNC TranslationType& translation() { return static_cast(this)->translation(); } /// Accessor of translation vector /// SOPHUS_FUNC TranslationType const& translation() const { return static_cast(this)->translation(); } /// Accessor of unit quaternion. /// SOPHUS_FUNC QuaternionType const& unit_quaternion() const { return this->so3().unit_quaternion(); } }; /// SE3 using default storage; derived from SE3Base. template class SE3 : public SE3Base> { using Base = SE3Base>; public: static int constexpr DoF = Base::DoF; static int constexpr num_parameters = Base::num_parameters; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using SO3Member = SO3; using TranslationMember = Vector3; using Base::operator=; EIGEN_MAKE_ALIGNED_OPERATOR_NEW /// Default constructor initializes rigid body motion to the identity. /// SOPHUS_FUNC SE3(); /// Copy constructor /// SOPHUS_FUNC SE3(SE3 const& other) = default; /// Copy-like constructor from OtherDerived. /// template SOPHUS_FUNC SE3(SE3Base const& other) : so3_(other.so3()), translation_(other.translation()) { static_assert(std::is_same::value, "must be same Scalar type"); } /// Constructor from SO3 and translation vector /// template SOPHUS_FUNC SE3(SO3Base const& so3, Eigen::MatrixBase const& translation) : so3_(so3), translation_(translation) { static_assert(std::is_same::value, "must be same Scalar type"); static_assert(std::is_same::value, "must be same Scalar type"); } /// Constructor from rotation matrix and translation vector /// /// Precondition: Rotation matrix needs to be orthogonal with determinant /// of 1. /// SOPHUS_FUNC SE3(Matrix3 const& rotation_matrix, Point const& translation) : so3_(rotation_matrix), translation_(translation) {} /// Constructor from quaternion and translation vector. /// /// Precondition: ``quaternion`` must not be close to zero. /// SOPHUS_FUNC SE3(Eigen::Quaternion const& quaternion, Point const& translation) : so3_(quaternion), translation_(translation) {} /// Constructor from 4x4 matrix /// /// Precondition: Rotation matrix needs to be orthogonal with determinant /// of 1. The last row must be ``(0, 0, 0, 1)``. /// SOPHUS_FUNC explicit SE3(Matrix4 const& T) : so3_(T.template topLeftCorner<3, 3>()), translation_(T.template block<3, 1>(0, 3)) { SOPHUS_ENSURE((T.row(3) - Matrix(Scalar(0), Scalar(0), Scalar(0), Scalar(1))) .squaredNorm() < Constants::epsilon(), "Last row is not (0,0,0,1), but (%).", T.row(3)); } /// This provides unsafe read/write access to internal data. SO(3) is /// represented by an Eigen::Quaternion (four parameters). When using direct /// write access, the user needs to take care of that the quaternion stays /// normalized. /// SOPHUS_FUNC Scalar* data() { // so3_ and translation_ are laid out sequentially with no padding return so3_.data(); } /// Const version of data() above. /// SOPHUS_FUNC Scalar const* data() const { // so3_ and translation_ are laid out sequentially with no padding return so3_.data(); } /// Mutator of SO3 /// SOPHUS_FUNC SO3Member& so3() { return so3_; } /// Accessor of SO3 /// SOPHUS_FUNC SO3Member const& so3() const { return so3_; } /// Mutator of translation vector /// SOPHUS_FUNC TranslationMember& translation() { return translation_; } /// Accessor of translation vector /// SOPHUS_FUNC TranslationMember const& translation() const { return translation_; } /// Returns derivative of exp(x) wrt. x. /// SOPHUS_FUNC static Sophus::Matrix Dx_exp_x( Tangent const& upsilon_omega) { using std::cos; using std::pow; using std::sin; using std::sqrt; Sophus::Matrix J; Sophus::Vector upsilon = upsilon_omega.template head<3>(); Sophus::Vector omega = upsilon_omega.template tail<3>(); Scalar const c0 = omega[0] * omega[0]; Scalar const c1 = omega[1] * omega[1]; Scalar const c2 = omega[2] * omega[2]; Scalar const c3 = c0 + c1 + c2; Scalar const o(0); Scalar const h(0.5); Scalar const i(1); if (c3 < Constants::epsilon()) { Scalar const ux = Scalar(0.5) * upsilon[0]; Scalar const uy = Scalar(0.5) * upsilon[1]; Scalar const uz = Scalar(0.5) * upsilon[2]; /// clang-format off J << o, o, o, h, o, o, o, o, o, o, h, o, o, o, o, o, o, h, o, o, o, o, o, o, i, o, o, o, uz, -uy, o, i, o, -uz, o, ux, o, o, i, uy, -ux, o; /// clang-format on return J; } Scalar const c4 = sqrt(c3); Scalar const c5 = Scalar(1.0) / c4; Scalar const c6 = Scalar(0.5) * c4; Scalar const c7 = sin(c6); Scalar const c8 = c5 * c7; Scalar const c9 = pow(c3, -3.0L / 2.0L); Scalar const c10 = c7 * c9; Scalar const c11 = Scalar(1.0) / c3; Scalar const c12 = cos(c6); Scalar const c13 = Scalar(0.5) * c11 * c12; Scalar const c14 = c7 * c9 * omega[0]; Scalar const c15 = Scalar(0.5) * c11 * c12 * omega[0]; Scalar const c16 = -c14 * omega[1] + c15 * omega[1]; Scalar const c17 = -c14 * omega[2] + c15 * omega[2]; Scalar const c18 = omega[1] * omega[2]; Scalar const c19 = -c10 * c18 + c13 * c18; Scalar const c20 = c5 * omega[0]; Scalar const c21 = Scalar(0.5) * c7; Scalar const c22 = c5 * omega[1]; Scalar const c23 = c5 * omega[2]; Scalar const c24 = -c1; Scalar const c25 = -c2; Scalar const c26 = c24 + c25; Scalar const c27 = sin(c4); Scalar const c28 = -c27 + c4; Scalar const c29 = c28 * c9; Scalar const c30 = cos(c4); Scalar const c31 = -c30 + Scalar(1); Scalar const c32 = c11 * c31; Scalar const c33 = c32 * omega[2]; Scalar const c34 = c29 * omega[0]; Scalar const c35 = c34 * omega[1]; Scalar const c36 = c32 * omega[1]; Scalar const c37 = c34 * omega[2]; Scalar const c38 = pow(c3, -5.0L / 2.0L); Scalar const c39 = Scalar(3) * c28 * c38 * omega[0]; Scalar const c40 = c26 * c9; Scalar const c41 = -c20 * c30 + c20; Scalar const c42 = c27 * c9 * omega[0]; Scalar const c43 = c42 * omega[1]; Scalar const c44 = pow(c3, -2); Scalar const c45 = Scalar(2) * c31 * c44 * omega[0]; Scalar const c46 = c45 * omega[1]; Scalar const c47 = c29 * omega[2]; Scalar const c48 = c43 - c46 + c47; Scalar const c49 = Scalar(3) * c0 * c28 * c38; Scalar const c50 = c9 * omega[0] * omega[2]; Scalar const c51 = c41 * c50 - c49 * omega[2]; Scalar const c52 = c9 * omega[0] * omega[1]; Scalar const c53 = c41 * c52 - c49 * omega[1]; Scalar const c54 = c42 * omega[2]; Scalar const c55 = c45 * omega[2]; Scalar const c56 = c29 * omega[1]; Scalar const c57 = -c54 + c55 + c56; Scalar const c58 = Scalar(-2) * c56; Scalar const c59 = Scalar(3) * c28 * c38 * omega[1]; Scalar const c60 = -c22 * c30 + c22; Scalar const c61 = -c18 * c39; Scalar const c62 = c32 + c61; Scalar const c63 = c27 * c9; Scalar const c64 = c1 * c63; Scalar const c65 = Scalar(2) * c31 * c44; Scalar const c66 = c1 * c65; Scalar const c67 = c50 * c60; Scalar const c68 = -c1 * c39 + c52 * c60; Scalar const c69 = c18 * c63; Scalar const c70 = c18 * c65; Scalar const c71 = c34 - c69 + c70; Scalar const c72 = Scalar(-2) * c47; Scalar const c73 = Scalar(3) * c28 * c38 * omega[2]; Scalar const c74 = -c23 * c30 + c23; Scalar const c75 = -c32 + c61; Scalar const c76 = c2 * c63; Scalar const c77 = c2 * c65; Scalar const c78 = c52 * c74; Scalar const c79 = c34 + c69 - c70; Scalar const c80 = -c2 * c39 + c50 * c74; Scalar const c81 = -c0; Scalar const c82 = c25 + c81; Scalar const c83 = c32 * omega[0]; Scalar const c84 = c18 * c29; Scalar const c85 = Scalar(-2) * c34; Scalar const c86 = c82 * c9; Scalar const c87 = c0 * c63; Scalar const c88 = c0 * c65; Scalar const c89 = c9 * omega[1] * omega[2]; Scalar const c90 = c41 * c89; Scalar const c91 = c54 - c55 + c56; Scalar const c92 = -c1 * c73 + c60 * c89; Scalar const c93 = -c43 + c46 + c47; Scalar const c94 = -c2 * c59 + c74 * c89; Scalar const c95 = c24 + c81; Scalar const c96 = c9 * c95; J(0, 0) = o; J(0, 1) = o; J(0, 2) = o; J(0, 3) = -c0 * c10 + c0 * c13 + c8; J(0, 4) = c16; J(0, 5) = c17; J(1, 0) = o; J(1, 1) = o; J(1, 2) = o; J(1, 3) = c16; J(1, 4) = -c1 * c10 + c1 * c13 + c8; J(1, 5) = c19; J(2, 0) = o; J(2, 1) = o; J(2, 2) = o; J(2, 3) = c17; J(2, 4) = c19; J(2, 5) = -c10 * c2 + c13 * c2 + c8; J(3, 0) = o; J(3, 1) = o; J(3, 2) = o; J(3, 3) = -c20 * c21; J(3, 4) = -c21 * c22; J(3, 5) = -c21 * c23; J(4, 0) = c26 * c29 + Scalar(1); J(4, 1) = -c33 + c35; J(4, 2) = c36 + c37; J(4, 3) = upsilon[0] * (-c26 * c39 + c40 * c41) + upsilon[1] * (c53 + c57) + upsilon[2] * (c48 + c51); J(4, 4) = upsilon[0] * (-c26 * c59 + c40 * c60 + c58) + upsilon[1] * (c68 + c71) + upsilon[2] * (c62 + c64 - c66 + c67); J(4, 5) = upsilon[0] * (-c26 * c73 + c40 * c74 + c72) + upsilon[1] * (c75 - c76 + c77 + c78) + upsilon[2] * (c79 + c80); J(5, 0) = c33 + c35; J(5, 1) = c29 * c82 + Scalar(1); J(5, 2) = -c83 + c84; J(5, 3) = upsilon[0] * (c53 + c91) + upsilon[1] * (-c39 * c82 + c41 * c86 + c85) + upsilon[2] * (c75 - c87 + c88 + c90); J(5, 4) = upsilon[0] * (c68 + c79) + upsilon[1] * (-c59 * c82 + c60 * c86) + upsilon[2] * (c92 + c93); J(5, 5) = upsilon[0] * (c62 + c76 - c77 + c78) + upsilon[1] * (c72 - c73 * c82 + c74 * c86) + upsilon[2] * (c57 + c94); J(6, 0) = -c36 + c37; J(6, 1) = c83 + c84; J(6, 2) = c29 * c95 + Scalar(1); J(6, 3) = upsilon[0] * (c51 + c93) + upsilon[1] * (c62 + c87 - c88 + c90) + upsilon[2] * (-c39 * c95 + c41 * c96 + c85); J(6, 4) = upsilon[0] * (-c64 + c66 + c67 + c75) + upsilon[1] * (c48 + c92) + upsilon[2] * (c58 - c59 * c95 + c60 * c96); J(6, 5) = upsilon[0] * (c71 + c80) + upsilon[1] * (c91 + c94) + upsilon[2] * (-c73 * c95 + c74 * c96); return J; } /// Returns derivative of exp(x) wrt. x_i at x=0. /// SOPHUS_FUNC static Sophus::Matrix Dx_exp_x_at_0() { Sophus::Matrix J; Scalar const o(0); Scalar const h(0.5); Scalar const i(1); // clang-format off J << o, o, o, h, o, o, o, o, o, o, h, o, o, o, o, o, o, h, o, o, o, o, o, o, i, o, o, o, o, o, o, i, o, o, o, o, o, o, i, o, o, o; // clang-format on return J; } /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``. /// SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) { return generator(i); } /// Group exponential /// /// This functions takes in an element of tangent space (= twist ``a``) and /// returns the corresponding element of the group SE(3). /// /// The first three components of ``a`` represent the translational part /// ``upsilon`` in the tangent space of SE(3), while the last three components /// of ``a`` represents the rotation vector ``omega``. /// To be more specific, this function computes ``expmat(hat(a))`` with /// ``expmat(.)`` being the matrix exponential and ``hat(.)`` the hat-operator /// of SE(3), see below. /// SOPHUS_FUNC static SE3 exp(Tangent const& a) { using std::cos; using std::sin; Vector3 const omega = a.template tail<3>(); Scalar theta; SO3 const so3 = SO3::expAndTheta(omega, &theta); Matrix3 const Omega = SO3::hat(omega); Matrix3 const Omega_sq = Omega * Omega; Matrix3 V; if (theta < Constants::epsilon()) { V = so3.matrix(); /// Note: That is an accurate expansion! } else { Scalar theta_sq = theta * theta; V = (Matrix3::Identity() + (Scalar(1) - cos(theta)) / (theta_sq)*Omega + (theta - sin(theta)) / (theta_sq * theta) * Omega_sq); } return SE3(so3, V * a.template head<3>()); } /// Returns closest SE3 given arbirary 4x4 matrix. /// template SOPHUS_FUNC static enable_if_t::value, SE3> fitToSE3(Matrix4 const& T) { return SE3(SO3::fitToSO3(T.template block<3, 3>(0, 0)), T.template block<3, 1>(0, 3)); } /// Returns the ith infinitesimal generators of SE(3). /// /// The infinitesimal generators of SE(3) are: /// /// ``` /// | 0 0 0 1 | /// G_0 = | 0 0 0 0 | /// | 0 0 0 0 | /// | 0 0 0 0 | /// /// | 0 0 0 0 | /// G_1 = | 0 0 0 1 | /// | 0 0 0 0 | /// | 0 0 0 0 | /// /// | 0 0 0 0 | /// G_2 = | 0 0 0 0 | /// | 0 0 0 1 | /// | 0 0 0 0 | /// /// | 0 0 0 0 | /// G_3 = | 0 0 -1 0 | /// | 0 1 0 0 | /// | 0 0 0 0 | /// /// | 0 0 1 0 | /// G_4 = | 0 0 0 0 | /// | -1 0 0 0 | /// | 0 0 0 0 | /// /// | 0 -1 0 0 | /// G_5 = | 1 0 0 0 | /// | 0 0 0 0 | /// | 0 0 0 0 | /// ``` /// /// Precondition: ``i`` must be in [0, 5]. /// SOPHUS_FUNC static Transformation generator(int i) { SOPHUS_ENSURE(i >= 0 && i <= 5, "i should be in range [0,5]."); Tangent e; e.setZero(); e[i] = Scalar(1); return hat(e); } /// hat-operator /// /// It takes in the 6-vector representation (= twist) and returns the /// corresponding matrix representation of Lie algebra element. /// /// Formally, the hat()-operator of SE(3) is defined as /// /// ``hat(.): R^6 -> R^{4x4}, hat(a) = sum_i a_i * G_i`` (for i=0,...,5) /// /// with ``G_i`` being the ith infinitesimal generator of SE(3). /// /// The corresponding inverse is the vee()-operator, see below. /// SOPHUS_FUNC static Transformation hat(Tangent const& a) { Transformation Omega; Omega.setZero(); Omega.template topLeftCorner<3, 3>() = SO3::hat(a.template tail<3>()); Omega.col(3).template head<3>() = a.template head<3>(); return Omega; } /// Lie bracket /// /// It computes the Lie bracket of SE(3). To be more specific, it computes /// /// ``[omega_1, omega_2]_se3 := vee([hat(omega_1), hat(omega_2)])`` /// /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the /// hat()-operator and ``vee(.)`` the vee()-operator of SE(3). /// SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) { Vector3 const upsilon1 = a.template head<3>(); Vector3 const upsilon2 = b.template head<3>(); Vector3 const omega1 = a.template tail<3>(); Vector3 const omega2 = b.template tail<3>(); Tangent res; res.template head<3>() = omega1.cross(upsilon2) + upsilon1.cross(omega2); res.template tail<3>() = omega1.cross(omega2); return res; } /// Construct x-axis rotation. /// static SOPHUS_FUNC SE3 rotX(Scalar const& x) { return SE3(SO3::rotX(x), Sophus::Vector3::Zero()); } /// Construct y-axis rotation. /// static SOPHUS_FUNC SE3 rotY(Scalar const& y) { return SE3(SO3::rotY(y), Sophus::Vector3::Zero()); } /// Construct z-axis rotation. /// static SOPHUS_FUNC SE3 rotZ(Scalar const& z) { return SE3(SO3::rotZ(z), Sophus::Vector3::Zero()); } /// Draw uniform sample from SE(3) manifold. /// /// Translations are drawn component-wise from the range [-1, 1]. /// template static SE3 sampleUniform(UniformRandomBitGenerator& generator) { std::uniform_real_distribution uniform(Scalar(-1), Scalar(1)); return SE3(SO3::sampleUniform(generator), Vector3(uniform(generator), uniform(generator), uniform(generator))); } /// Construct a translation only SE3 instance. /// template static SOPHUS_FUNC SE3 trans(T0 const& x, T1 const& y, T2 const& z) { return SE3(SO3(), Vector3(x, y, z)); } static SOPHUS_FUNC SE3 trans(Vector3 const& xyz) { return SE3(SO3(), xyz); } /// Construct x-axis translation. /// static SOPHUS_FUNC SE3 transX(Scalar const& x) { return SE3::trans(x, Scalar(0), Scalar(0)); } /// Construct y-axis translation. /// static SOPHUS_FUNC SE3 transY(Scalar const& y) { return SE3::trans(Scalar(0), y, Scalar(0)); } /// Construct z-axis translation. /// static SOPHUS_FUNC SE3 transZ(Scalar const& z) { return SE3::trans(Scalar(0), Scalar(0), z); } /// vee-operator /// /// It takes 4x4-matrix representation ``Omega`` and maps it to the /// corresponding 6-vector representation of Lie algebra. /// /// This is the inverse of the hat()-operator, see above. /// /// Precondition: ``Omega`` must have the following structure: /// /// | 0 -f e a | /// | f 0 -d b | /// | -e d 0 c /// | 0 0 0 0 | . /// SOPHUS_FUNC static Tangent vee(Transformation const& Omega) { Tangent upsilon_omega; upsilon_omega.template head<3>() = Omega.col(3).template head<3>(); upsilon_omega.template tail<3>() = SO3::vee(Omega.template topLeftCorner<3, 3>()); return upsilon_omega; } protected: SO3Member so3_; TranslationMember translation_; }; template SE3::SE3() : translation_(TranslationMember::Zero()) { static_assert(std::is_standard_layout::value, "Assume standard layout for the use of offsetof check below."); static_assert( offsetof(SE3, so3_) + sizeof(Scalar) * SO3::num_parameters == offsetof(SE3, translation_), "This class assumes packed storage and hence will only work " "correctly depending on the compiler (options) - in " "particular when using [this->data(), this-data() + " "num_parameters] to access the raw data in a contiguous fashion."); } } // namespace Sophus namespace Eigen { /// Specialization of Eigen::Map for ``SE3``; derived from SE3Base. /// /// Allows us to wrap SE3 objects around POD array. template class Map, Options> : public Sophus::SE3Base, Options>> { public: using Base = Sophus::SE3Base, Options>>; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using Base::operator=; using Base::operator*=; using Base::operator*; SOPHUS_FUNC Map(Scalar* coeffs) : so3_(coeffs), translation_(coeffs + Sophus::SO3::num_parameters) {} /// Mutator of SO3 /// SOPHUS_FUNC Map, Options>& so3() { return so3_; } /// Accessor of SO3 /// SOPHUS_FUNC Map, Options> const& so3() const { return so3_; } /// Mutator of translation vector /// SOPHUS_FUNC Map>& translation() { return translation_; } /// Accessor of translation vector /// SOPHUS_FUNC Map> const& translation() const { return translation_; } protected: Map, Options> so3_; Map, Options> translation_; }; /// Specialization of Eigen::Map for ``SE3 const``; derived from SE3Base. /// /// Allows us to wrap SE3 objects around POD array. template class Map const, Options> : public Sophus::SE3Base const, Options>> { public: using Base = Sophus::SE3Base const, Options>>; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using Base::operator*=; using Base::operator*; SOPHUS_FUNC Map(Scalar const* coeffs) : so3_(coeffs), translation_(coeffs + Sophus::SO3::num_parameters) {} /// Accessor of SO3 /// SOPHUS_FUNC Map const, Options> const& so3() const { return so3_; } /// Accessor of translation vector /// SOPHUS_FUNC Map const, Options> const& translation() const { return translation_; } protected: Map const, Options> const so3_; Map const, Options> const translation_; }; } // namespace Eigen #endif