forked from logzhan/ORB-SLAM3-UESTC
232 lines
8.0 KiB
C++
232 lines
8.0 KiB
C++
/// @file
|
|
/// Calculation of biinvariant means.
|
|
|
|
#ifndef SOPHUS_AVERAGE_HPP
|
|
#define SOPHUS_AVERAGE_HPP
|
|
|
|
#include "common.hpp"
|
|
#include "rxso2.hpp"
|
|
#include "rxso3.hpp"
|
|
#include "se2.hpp"
|
|
#include "se3.hpp"
|
|
#include "sim2.hpp"
|
|
#include "sim3.hpp"
|
|
#include "so2.hpp"
|
|
#include "so3.hpp"
|
|
|
|
namespace Sophus {
|
|
|
|
/// Calculates mean iteratively.
|
|
///
|
|
/// Returns ``nullopt`` if it does not converge.
|
|
///
|
|
template <class SequenceContainer>
|
|
optional<typename SequenceContainer::value_type> iterativeMean(
|
|
SequenceContainer const& foo_Ts_bar, int max_num_iterations) {
|
|
size_t N = foo_Ts_bar.size();
|
|
SOPHUS_ENSURE(N >= 1, "N must be >= 1.");
|
|
|
|
using Group = typename SequenceContainer::value_type;
|
|
using Scalar = typename Group::Scalar;
|
|
using Tangent = typename Group::Tangent;
|
|
|
|
// This implements the algorithm in the beginning of Sec. 4.2 in
|
|
// ftp://ftp-sop.inria.fr/epidaure/Publications/Arsigny/arsigny_rr_biinvariant_average.pdf.
|
|
Group foo_T_average = foo_Ts_bar.front();
|
|
Scalar w = Scalar(1. / N);
|
|
for (int i = 0; i < max_num_iterations; ++i) {
|
|
Tangent average;
|
|
setToZero<Tangent>(average);
|
|
for (Group const& foo_T_bar : foo_Ts_bar) {
|
|
average += w * (foo_T_average.inverse() * foo_T_bar).log();
|
|
}
|
|
Group foo_T_newaverage = foo_T_average * Group::exp(average);
|
|
if (squaredNorm<Tangent>(
|
|
(foo_T_newaverage.inverse() * foo_T_average).log()) <
|
|
Constants<Scalar>::epsilon()) {
|
|
return foo_T_newaverage;
|
|
}
|
|
|
|
foo_T_average = foo_T_newaverage;
|
|
}
|
|
// LCOV_EXCL_START
|
|
return nullopt;
|
|
// LCOV_EXCL_STOP
|
|
}
|
|
|
|
#ifdef DOXYGEN_SHOULD_SKIP_THIS
|
|
/// Mean implementation for any Lie group.
|
|
template <class SequenceContainer, class Scalar>
|
|
optional<typename SequenceContainer::value_type> average(
|
|
SequenceContainer const& foo_Ts_bar);
|
|
#else
|
|
|
|
// Mean implementation for SO(2).
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, SO2<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar) {
|
|
// This implements rotational part of Proposition 12 from Sec. 6.2 of
|
|
// ftp://ftp-sop.inria.fr/epidaure/Publications/Arsigny/arsigny_rr_biinvariant_average.pdf.
|
|
size_t N = std::distance(std::begin(foo_Ts_bar), std::end(foo_Ts_bar));
|
|
SOPHUS_ENSURE(N >= 1, "N must be >= 1.");
|
|
SO2<Scalar> foo_T_average = foo_Ts_bar.front();
|
|
Scalar w = Scalar(1. / N);
|
|
|
|
Scalar average(0);
|
|
for (SO2<Scalar> const& foo_T_bar : foo_Ts_bar) {
|
|
average += w * (foo_T_average.inverse() * foo_T_bar).log();
|
|
}
|
|
return foo_T_average * SO2<Scalar>::exp(average);
|
|
}
|
|
|
|
// Mean implementation for RxSO(2).
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, RxSO2<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar) {
|
|
size_t N = std::distance(std::begin(foo_Ts_bar), std::end(foo_Ts_bar));
|
|
SOPHUS_ENSURE(N >= 1, "N must be >= 1.");
|
|
RxSO2<Scalar> foo_T_average = foo_Ts_bar.front();
|
|
Scalar w = Scalar(1. / N);
|
|
|
|
Vector2<Scalar> average(Scalar(0), Scalar(0));
|
|
for (RxSO2<Scalar> const& foo_T_bar : foo_Ts_bar) {
|
|
average += w * (foo_T_average.inverse() * foo_T_bar).log();
|
|
}
|
|
return foo_T_average * RxSO2<Scalar>::exp(average);
|
|
}
|
|
|
|
namespace details {
|
|
template <class T>
|
|
void getQuaternion(T const&);
|
|
|
|
template <class Scalar>
|
|
Eigen::Quaternion<Scalar> getUnitQuaternion(SO3<Scalar> const& R) {
|
|
return R.unit_quaternion();
|
|
}
|
|
|
|
template <class Scalar>
|
|
Eigen::Quaternion<Scalar> getUnitQuaternion(RxSO3<Scalar> const& sR) {
|
|
return sR.so3().unit_quaternion();
|
|
}
|
|
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
Eigen::Quaternion<Scalar> averageUnitQuaternion(
|
|
SequenceContainer const& foo_Ts_bar) {
|
|
// This: http://stackoverflow.com/a/27410865/1221742
|
|
size_t N = std::distance(std::begin(foo_Ts_bar), std::end(foo_Ts_bar));
|
|
SOPHUS_ENSURE(N >= 1, "N must be >= 1.");
|
|
Eigen::Matrix<Scalar, 4, Eigen::Dynamic> Q(4, N);
|
|
int i = 0;
|
|
Scalar w = Scalar(1. / N);
|
|
for (auto const& foo_T_bar : foo_Ts_bar) {
|
|
Q.col(i) = w * details::getUnitQuaternion(foo_T_bar).coeffs();
|
|
++i;
|
|
}
|
|
|
|
Eigen::Matrix<Scalar, 4, 4> QQt = Q * Q.transpose();
|
|
// TODO: Figure out why we can't use SelfAdjointEigenSolver here.
|
|
Eigen::EigenSolver<Eigen::Matrix<Scalar, 4, 4> > es(QQt);
|
|
|
|
std::complex<Scalar> max_eigenvalue = es.eigenvalues()[0];
|
|
Eigen::Matrix<std::complex<Scalar>, 4, 1> max_eigenvector =
|
|
es.eigenvectors().col(0);
|
|
|
|
for (int i = 1; i < 4; i++) {
|
|
if (std::norm(es.eigenvalues()[i]) > std::norm(max_eigenvalue)) {
|
|
max_eigenvalue = es.eigenvalues()[i];
|
|
max_eigenvector = es.eigenvectors().col(i);
|
|
}
|
|
}
|
|
Eigen::Quaternion<Scalar> quat;
|
|
quat.coeffs() << //
|
|
max_eigenvector[0].real(), //
|
|
max_eigenvector[1].real(), //
|
|
max_eigenvector[2].real(), //
|
|
max_eigenvector[3].real();
|
|
return quat;
|
|
}
|
|
} // namespace details
|
|
|
|
// Mean implementation for SO(3).
|
|
//
|
|
// TODO: Detect degenerated cases and return nullopt.
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, SO3<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar) {
|
|
return SO3<Scalar>(details::averageUnitQuaternion(foo_Ts_bar));
|
|
}
|
|
|
|
// Mean implementation for R x SO(3).
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, RxSO3<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar) {
|
|
size_t N = std::distance(std::begin(foo_Ts_bar), std::end(foo_Ts_bar));
|
|
|
|
SOPHUS_ENSURE(N >= 1, "N must be >= 1.");
|
|
Scalar scale_sum = Scalar(0);
|
|
using std::exp;
|
|
using std::log;
|
|
for (RxSO3<Scalar> const& foo_T_bar : foo_Ts_bar) {
|
|
scale_sum += log(foo_T_bar.scale());
|
|
}
|
|
return RxSO3<Scalar>(exp(scale_sum / Scalar(N)),
|
|
SO3<Scalar>(details::averageUnitQuaternion(foo_Ts_bar)));
|
|
}
|
|
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, SE2<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar, int max_num_iterations = 20) {
|
|
// TODO: Implement Proposition 12 from Sec. 6.2 of
|
|
// ftp://ftp-sop.inria.fr/epidaure/Publications/Arsigny/arsigny_rr_biinvariant_average.pdf.
|
|
return iterativeMean(foo_Ts_bar, max_num_iterations);
|
|
}
|
|
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, Sim2<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar, int max_num_iterations = 20) {
|
|
return iterativeMean(foo_Ts_bar, max_num_iterations);
|
|
}
|
|
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, SE3<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar, int max_num_iterations = 20) {
|
|
return iterativeMean(foo_Ts_bar, max_num_iterations);
|
|
}
|
|
|
|
template <class SequenceContainer,
|
|
class Scalar = typename SequenceContainer::value_type::Scalar>
|
|
enable_if_t<
|
|
std::is_same<typename SequenceContainer::value_type, Sim3<Scalar> >::value,
|
|
optional<typename SequenceContainer::value_type> >
|
|
average(SequenceContainer const& foo_Ts_bar, int max_num_iterations = 20) {
|
|
return iterativeMean(foo_Ts_bar, max_num_iterations);
|
|
}
|
|
|
|
#endif // DOXYGEN_SHOULD_SKIP_THIS
|
|
|
|
} // namespace Sophus
|
|
|
|
#endif // SOPHUS_AVERAGE_HPP
|