1
0
Fork 0
ORB-SLAM3-UESTC/Workspace/Thirdparty/Sophus/sophus/so2.hpp

622 lines
21 KiB
C++

/// @file
/// Special orthogonal group SO(2) - rotation in 2d.
#ifndef SOPHUS_SO2_HPP
#define SOPHUS_SO2_HPP
#include <complex>
#include <type_traits>
// Include only the selective set of Eigen headers that we need.
// This helps when using Sophus with unusual compilers, like nvcc.
#include <Eigen/LU>
#include "rotation_matrix.hpp"
#include "types.hpp"
namespace Sophus {
template <class Scalar_, int Options = 0>
class SO2;
using SO2d = SO2<double>;
using SO2f = SO2<float>;
} // namespace Sophus
namespace Eigen {
namespace internal {
template <class Scalar_, int Options_>
struct traits<Sophus::SO2<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using ComplexType = Sophus::Vector2<Scalar, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::SO2<Scalar_>, Options_>>
: traits<Sophus::SO2<Scalar_, Options_>> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using ComplexType = Map<Sophus::Vector2<Scalar>, Options>;
};
template <class Scalar_, int Options_>
struct traits<Map<Sophus::SO2<Scalar_> const, Options_>>
: traits<Sophus::SO2<Scalar_, Options_> const> {
static constexpr int Options = Options_;
using Scalar = Scalar_;
using ComplexType = Map<Sophus::Vector2<Scalar> const, Options>;
};
} // namespace internal
} // namespace Eigen
namespace Sophus {
/// SO2 base type - implements SO2 class but is storage agnostic.
///
/// SO(2) is the group of rotations in 2d. As a matrix group, it is the set of
/// matrices which are orthogonal such that ``R * R' = I`` (with ``R'`` being
/// the transpose of ``R``) and have a positive determinant. In particular, the
/// determinant is 1. Let ``theta`` be the rotation angle, the rotation matrix
/// can be written in close form:
///
/// | cos(theta) -sin(theta) |
/// | sin(theta) cos(theta) |
///
/// As a matter of fact, the first column of those matrices is isomorph to the
/// set of unit complex numbers U(1). Thus, internally, SO2 is represented as
/// complex number with length 1.
///
/// SO(2) is a compact and commutative group. First it is compact since the set
/// of rotation matrices is a closed and bounded set. Second it is commutative
/// since ``R(alpha) * R(beta) = R(beta) * R(alpha)``, simply because ``alpha +
/// beta = beta + alpha`` with ``alpha`` and ``beta`` being rotation angles
/// (about the same axis).
///
/// Class invariant: The 2-norm of ``unit_complex`` must be close to 1.
/// Technically speaking, it must hold that:
///
/// ``|unit_complex().squaredNorm() - 1| <= Constants::epsilon()``.
template <class Derived>
class SO2Base {
public:
static constexpr int Options = Eigen::internal::traits<Derived>::Options;
using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
using ComplexT = typename Eigen::internal::traits<Derived>::ComplexType;
using ComplexTemporaryType = Sophus::Vector2<Scalar, Options>;
/// Degrees of freedom of manifold, number of dimensions in tangent space (one
/// since we only have in-plane rotations).
static int constexpr DoF = 1;
/// Number of internal parameters used (complex numbers are a tuples).
static int constexpr num_parameters = 2;
/// Group transformations are 2x2 matrices.
static int constexpr N = 2;
using Transformation = Matrix<Scalar, N, N>;
using Point = Vector2<Scalar>;
using HomogeneousPoint = Vector3<Scalar>;
using Line = ParametrizedLine2<Scalar>;
using Tangent = Scalar;
using Adjoint = Scalar;
/// For binary operations the return type is determined with the
/// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
/// types, as well as other compatible scalar types such as Ceres::Jet and
/// double scalars with SO2 operations.
template <typename OtherDerived>
using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
Scalar, typename OtherDerived::Scalar>::ReturnType;
template <typename OtherDerived>
using SO2Product = SO2<ReturnScalar<OtherDerived>>;
template <typename PointDerived>
using PointProduct = Vector2<ReturnScalar<PointDerived>>;
template <typename HPointDerived>
using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
/// Adjoint transformation
///
/// This function return the adjoint transformation ``Ad`` of the group
/// element ``A`` such that for all ``x`` it holds that
/// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
///
/// It simply ``1``, since ``SO(2)`` is a commutative group.
///
SOPHUS_FUNC Adjoint Adj() const { return Scalar(1); }
/// Returns copy of instance casted to NewScalarType.
///
template <class NewScalarType>
SOPHUS_FUNC SO2<NewScalarType> cast() const {
return SO2<NewScalarType>(unit_complex().template cast<NewScalarType>());
}
/// This provides unsafe read/write access to internal data. SO(2) is
/// represented by a unit complex number (two parameters). When using direct
/// write access, the user needs to take care of that the complex number stays
/// normalized.
///
SOPHUS_FUNC Scalar* data() { return unit_complex_nonconst().data(); }
/// Const version of data() above.
///
SOPHUS_FUNC Scalar const* data() const { return unit_complex().data(); }
/// Returns group inverse.
///
SOPHUS_FUNC SO2<Scalar> inverse() const {
return SO2<Scalar>(unit_complex().x(), -unit_complex().y());
}
/// Logarithmic map
///
/// Computes the logarithm, the inverse of the group exponential which maps
/// element of the group (rotation matrices) to elements of the tangent space
/// (rotation angles).
///
/// To be specific, this function computes ``vee(logmat(.))`` with
/// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
/// of SO(2).
///
SOPHUS_FUNC Scalar log() const {
using std::atan2;
return atan2(unit_complex().y(), unit_complex().x());
}
/// It re-normalizes ``unit_complex`` to unit length.
///
/// Note: Because of the class invariant, there is typically no need to call
/// this function directly.
///
SOPHUS_FUNC void normalize() {
using std::sqrt;
Scalar length = sqrt(unit_complex().x() * unit_complex().x() +
unit_complex().y() * unit_complex().y());
SOPHUS_ENSURE(length >= Constants<Scalar>::epsilon(),
"Complex number should not be close to zero!");
unit_complex_nonconst().x() /= length;
unit_complex_nonconst().y() /= length;
}
/// Returns 2x2 matrix representation of the instance.
///
/// For SO(2), the matrix representation is an orthogonal matrix ``R`` with
/// ``det(R)=1``, thus the so-called "rotation matrix".
///
SOPHUS_FUNC Transformation matrix() const {
Scalar const& real = unit_complex().x();
Scalar const& imag = unit_complex().y();
Transformation R;
// clang-format off
R <<
real, -imag,
imag, real;
// clang-format on
return R;
}
/// Assignment-like operator from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC SO2Base<Derived>& operator=(SO2Base<OtherDerived> const& other) {
unit_complex_nonconst() = other.unit_complex();
return *this;
}
/// Group multiplication, which is rotation concatenation.
///
template <typename OtherDerived>
SOPHUS_FUNC SO2Product<OtherDerived> operator*(
SO2Base<OtherDerived> const& other) const {
using ResultT = ReturnScalar<OtherDerived>;
Scalar const lhs_real = unit_complex().x();
Scalar const lhs_imag = unit_complex().y();
typename OtherDerived::Scalar const& rhs_real = other.unit_complex().x();
typename OtherDerived::Scalar const& rhs_imag = other.unit_complex().y();
// complex multiplication
ResultT const result_real = lhs_real * rhs_real - lhs_imag * rhs_imag;
ResultT const result_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
ResultT const squared_norm =
result_real * result_real + result_imag * result_imag;
// We can assume that the squared-norm is close to 1 since we deal with a
// unit complex number. Due to numerical precision issues, there might
// be a small drift after pose concatenation. Hence, we need to renormalizes
// the complex number here.
// Since squared-norm is close to 1, we do not need to calculate the costly
// square-root, but can use an approximation around 1 (see
// http://stackoverflow.com/a/12934750 for details).
if (squared_norm != ResultT(1.0)) {
ResultT const scale = ResultT(2.0) / (ResultT(1.0) + squared_norm);
return SO2Product<OtherDerived>(result_real * scale, result_imag * scale);
}
return SO2Product<OtherDerived>(result_real, result_imag);
}
/// Group action on 2-points.
///
/// This function rotates a 2 dimensional point ``p`` by the SO2 element
/// ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
///
template <typename PointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<PointDerived, 2>::value>::type>
SOPHUS_FUNC PointProduct<PointDerived> operator*(
Eigen::MatrixBase<PointDerived> const& p) const {
Scalar const& real = unit_complex().x();
Scalar const& imag = unit_complex().y();
return PointProduct<PointDerived>(real * p[0] - imag * p[1],
imag * p[0] + real * p[1]);
}
/// Group action on homogeneous 2-points.
///
/// This function rotates a homogeneous 2 dimensional point ``p`` by the SO2
/// element ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
///
template <typename HPointDerived,
typename = typename std::enable_if<
IsFixedSizeVector<HPointDerived, 3>::value>::type>
SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
Eigen::MatrixBase<HPointDerived> const& p) const {
Scalar const& real = unit_complex().x();
Scalar const& imag = unit_complex().y();
return HomogeneousPointProduct<HPointDerived>(
real * p[0] - imag * p[1], imag * p[0] + real * p[1], p[2]);
}
/// Group action on lines.
///
/// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO2
/// element:
///
/// Both direction ``d`` and origin ``o`` are rotated as a 2 dimensional point
///
SOPHUS_FUNC Line operator*(Line const& l) const {
return Line((*this) * l.origin(), (*this) * l.direction());
}
/// In-place group multiplication. This method is only valid if the return
/// type of the multiplication is compatible with this SO2's Scalar type.
///
template <typename OtherDerived,
typename = typename std::enable_if<
std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
SOPHUS_FUNC SO2Base<Derived> operator*=(SO2Base<OtherDerived> const& other) {
*static_cast<Derived*>(this) = *this * other;
return *this;
}
/// Returns derivative of this * SO2::exp(x) wrt. x at x=0.
///
SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
const {
return Matrix<Scalar, num_parameters, DoF>(-unit_complex()[1],
unit_complex()[0]);
}
/// Returns internal parameters of SO(2).
///
/// It returns (c[0], c[1]), with c being the unit complex number.
///
SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
return unit_complex();
}
/// Takes in complex number / tuple and normalizes it.
///
/// Precondition: The complex number must not be close to zero.
///
SOPHUS_FUNC void setComplex(Point const& complex) {
unit_complex_nonconst() = complex;
normalize();
}
/// Accessor of unit quaternion.
///
SOPHUS_FUNC
ComplexT const& unit_complex() const {
return static_cast<Derived const*>(this)->unit_complex();
}
private:
/// Mutator of unit_complex is private to ensure class invariant. That is
/// the complex number must stay close to unit length.
///
SOPHUS_FUNC
ComplexT& unit_complex_nonconst() {
return static_cast<Derived*>(this)->unit_complex_nonconst();
}
};
/// SO2 using default storage; derived from SO2Base.
template <class Scalar_, int Options>
class SO2 : public SO2Base<SO2<Scalar_, Options>> {
public:
using Base = SO2Base<SO2<Scalar_, Options>>;
static int constexpr DoF = Base::DoF;
static int constexpr num_parameters = Base::num_parameters;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using ComplexMember = Vector2<Scalar, Options>;
/// ``Base`` is friend so unit_complex_nonconst can be accessed from ``Base``.
friend class SO2Base<SO2<Scalar, Options>>;
using Base::operator=;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// Default constructor initializes unit complex number to identity rotation.
///
SOPHUS_FUNC SO2() : unit_complex_(Scalar(1), Scalar(0)) {}
/// Copy constructor
///
SOPHUS_FUNC SO2(SO2 const& other) = default;
/// Copy-like constructor from OtherDerived.
///
template <class OtherDerived>
SOPHUS_FUNC SO2(SO2Base<OtherDerived> const& other)
: unit_complex_(other.unit_complex()) {}
/// Constructor from rotation matrix
///
/// Precondition: rotation matrix need to be orthogonal with determinant of 1.
///
SOPHUS_FUNC explicit SO2(Transformation const& R)
: unit_complex_(Scalar(0.5) * (R(0, 0) + R(1, 1)),
Scalar(0.5) * (R(1, 0) - R(0, 1))) {
SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %", R);
SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %",
R.determinant());
}
/// Constructor from pair of real and imaginary number.
///
/// Precondition: The pair must not be close to zero.
///
SOPHUS_FUNC SO2(Scalar const& real, Scalar const& imag)
: unit_complex_(real, imag) {
Base::normalize();
}
/// Constructor from 2-vector.
///
/// Precondition: The vector must not be close to zero.
///
template <class D>
SOPHUS_FUNC explicit SO2(Eigen::MatrixBase<D> const& complex)
: unit_complex_(complex) {
static_assert(std::is_same<typename D::Scalar, Scalar>::value,
"must be same Scalar type");
Base::normalize();
}
/// Constructor from an rotation angle.
///
SOPHUS_FUNC explicit SO2(Scalar theta) {
unit_complex_nonconst() = SO2<Scalar>::exp(theta).unit_complex();
}
/// Accessor of unit complex number
///
SOPHUS_FUNC ComplexMember const& unit_complex() const {
return unit_complex_;
}
/// Group exponential
///
/// This functions takes in an element of tangent space (= rotation angle
/// ``theta``) and returns the corresponding element of the group SO(2).
///
/// To be more specific, this function computes ``expmat(hat(omega))``
/// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
/// hat()-operator of SO(2).
///
SOPHUS_FUNC static SO2<Scalar> exp(Tangent const& theta) {
using std::cos;
using std::sin;
return SO2<Scalar>(cos(theta), sin(theta));
}
/// Returns derivative of exp(x) wrt. x.
///
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
Tangent const& theta) {
using std::cos;
using std::sin;
return Sophus::Matrix<Scalar, num_parameters, DoF>(-sin(theta), cos(theta));
}
/// Returns derivative of exp(x) wrt. x_i at x=0.
///
SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
Dx_exp_x_at_0() {
return Sophus::Matrix<Scalar, num_parameters, DoF>(Scalar(0), Scalar(1));
}
/// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
///
SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int) {
return generator();
}
/// Returns the infinitesimal generators of SO(2).
///
/// The infinitesimal generators of SO(2) is:
///
/// | 0 1 |
/// | -1 0 |
///
SOPHUS_FUNC static Transformation generator() { return hat(Scalar(1)); }
/// hat-operator
///
/// It takes in the scalar representation ``theta`` (= rotation angle) and
/// returns the corresponding matrix representation of Lie algebra element.
///
/// Formally, the hat()-operator of SO(2) is defined as
///
/// ``hat(.): R^2 -> R^{2x2}, hat(theta) = theta * G``
///
/// with ``G`` being the infinitesimal generator of SO(2).
///
/// The corresponding inverse is the vee()-operator, see below.
///
SOPHUS_FUNC static Transformation hat(Tangent const& theta) {
Transformation Omega;
// clang-format off
Omega <<
Scalar(0), -theta,
theta, Scalar(0);
// clang-format on
return Omega;
}
/// Returns closed SO2 given arbitrary 2x2 matrix.
///
template <class S = Scalar>
static SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, SO2>
fitToSO2(Transformation const& R) {
return SO2(makeRotationMatrix(R));
}
/// Lie bracket
///
/// It returns the Lie bracket of SO(2). Since SO(2) is a commutative group,
/// the Lie bracket is simple ``0``.
///
SOPHUS_FUNC static Tangent lieBracket(Tangent const&, Tangent const&) {
return Scalar(0);
}
/// Draw uniform sample from SO(2) manifold.
///
template <class UniformRandomBitGenerator>
static SO2 sampleUniform(UniformRandomBitGenerator& generator) {
static_assert(IsUniformRandomBitGenerator<UniformRandomBitGenerator>::value,
"generator must meet the UniformRandomBitGenerator concept");
std::uniform_real_distribution<Scalar> uniform(-Constants<Scalar>::pi(),
Constants<Scalar>::pi());
return SO2(uniform(generator));
}
/// vee-operator
///
/// It takes the 2x2-matrix representation ``Omega`` and maps it to the
/// corresponding scalar representation of Lie algebra.
///
/// This is the inverse of the hat()-operator, see above.
///
/// Precondition: ``Omega`` must have the following structure:
///
/// | 0 -a |
/// | a 0 |
///
SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
using std::abs;
return Omega(1, 0);
}
protected:
/// Mutator of complex number is protected to ensure class invariant.
///
SOPHUS_FUNC ComplexMember& unit_complex_nonconst() { return unit_complex_; }
ComplexMember unit_complex_;
};
} // namespace Sophus
namespace Eigen {
/// Specialization of Eigen::Map for ``SO2``; derived from SO2Base.
///
/// Allows us to wrap SO2 objects around POD array (e.g. external c style
/// complex number / tuple).
template <class Scalar_, int Options>
class Map<Sophus::SO2<Scalar_>, Options>
: public Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>> {
public:
using Base = Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
/// ``Base`` is friend so unit_complex_nonconst can be accessed from ``Base``.
friend class Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>>;
using Base::operator=;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC
Map(Scalar* coeffs) : unit_complex_(coeffs) {}
/// Accessor of unit complex number.
///
SOPHUS_FUNC
Map<Sophus::Vector2<Scalar>, Options> const& unit_complex() const {
return unit_complex_;
}
protected:
/// Mutator of unit_complex is protected to ensure class invariant.
///
SOPHUS_FUNC
Map<Sophus::Vector2<Scalar>, Options>& unit_complex_nonconst() {
return unit_complex_;
}
Map<Matrix<Scalar, 2, 1>, Options> unit_complex_;
};
/// Specialization of Eigen::Map for ``SO2 const``; derived from SO2Base.
///
/// Allows us to wrap SO2 objects around POD array (e.g. external c style
/// complex number / tuple).
template <class Scalar_, int Options>
class Map<Sophus::SO2<Scalar_> const, Options>
: public Sophus::SO2Base<Map<Sophus::SO2<Scalar_> const, Options>> {
public:
using Base = Sophus::SO2Base<Map<Sophus::SO2<Scalar_> const, Options>>;
using Scalar = Scalar_;
using Transformation = typename Base::Transformation;
using Point = typename Base::Point;
using HomogeneousPoint = typename Base::HomogeneousPoint;
using Tangent = typename Base::Tangent;
using Adjoint = typename Base::Adjoint;
using Base::operator*=;
using Base::operator*;
SOPHUS_FUNC Map(Scalar const* coeffs) : unit_complex_(coeffs) {}
/// Accessor of unit complex number.
///
SOPHUS_FUNC Map<Sophus::Vector2<Scalar> const, Options> const& unit_complex()
const {
return unit_complex_;
}
protected:
/// Mutator of unit_complex is protected to ensure class invariant.
///
Map<Matrix<Scalar, 2, 1> const, Options> const unit_complex_;
};
} // namespace Eigen
#endif // SOPHUS_SO2_HPP