forked from logzhan/ORB-SLAM3-UESTC
261 lines
9.1 KiB
Python
261 lines
9.1 KiB
Python
import sympy
|
|
import sys
|
|
import unittest
|
|
import sophus
|
|
import functools
|
|
|
|
|
|
class Se3:
|
|
""" 3 dimensional group of rigid body transformations """
|
|
|
|
def __init__(self, so3, t):
|
|
""" internally represented by a unit quaternion q and a translation
|
|
3-vector """
|
|
assert isinstance(so3, sophus.So3)
|
|
assert isinstance(t, sympy.Matrix)
|
|
assert t.shape == (3, 1), t.shape
|
|
|
|
self.so3 = so3
|
|
self.t = t
|
|
|
|
@staticmethod
|
|
def exp(v):
|
|
""" exponential map """
|
|
upsilon = v[0:3, :]
|
|
omega = sophus.Vector3(v[3], v[4], v[5])
|
|
so3 = sophus.So3.exp(omega)
|
|
Omega = sophus.So3.hat(omega)
|
|
Omega_sq = Omega * Omega
|
|
theta = sympy.sqrt(sophus.squared_norm(omega))
|
|
V = (sympy.Matrix.eye(3) +
|
|
(1 - sympy.cos(theta)) / (theta**2) * Omega +
|
|
(theta - sympy.sin(theta)) / (theta**3) * Omega_sq)
|
|
return Se3(so3, V * upsilon)
|
|
|
|
def log(self):
|
|
|
|
omega = self.so3.log()
|
|
theta = sympy.sqrt(sophus.squared_norm(omega))
|
|
Omega = sophus.So3.hat(omega)
|
|
|
|
half_theta = 0.5 * theta
|
|
|
|
V_inv = sympy.Matrix.eye(3) - 0.5 * Omega + (1 - theta * sympy.cos(
|
|
half_theta) / (2 * sympy.sin(half_theta))) / (theta * theta) *\
|
|
(Omega * Omega)
|
|
upsilon = V_inv * self.t
|
|
return upsilon.col_join(omega)
|
|
|
|
def __repr__(self):
|
|
return "Se3: [" + repr(self.so3) + " " + repr(self.t)
|
|
|
|
def inverse(self):
|
|
invR = self.so3.inverse()
|
|
return Se3(invR, invR * (-1 * self.t))
|
|
|
|
@staticmethod
|
|
def hat(v):
|
|
""" R^6 => R^4x4 """
|
|
""" returns 4x4-matrix representation ``Omega`` """
|
|
upsilon = sophus.Vector3(v[0], v[1], v[2])
|
|
omega = sophus.Vector3(v[3], v[4], v[5])
|
|
return sophus.So3.hat(omega).\
|
|
row_join(upsilon).\
|
|
col_join(sympy.Matrix.zeros(1, 4))
|
|
|
|
@staticmethod
|
|
def vee(Omega):
|
|
""" R^4x4 => R^6 """
|
|
""" returns 6-vector representation of Lie algebra """
|
|
""" This is the inverse of the hat-operator """
|
|
|
|
head = sophus.Vector3(Omega[0,3], Omega[1,3], Omega[2,3])
|
|
tail = sophus.So3.vee(Omega[0:3,0:3])
|
|
upsilon_omega = \
|
|
sophus.Vector6(head[0], head[1], head[2], tail[0], tail[1], tail[2])
|
|
return upsilon_omega
|
|
|
|
|
|
def matrix(self):
|
|
""" returns matrix representation """
|
|
R = self.so3.matrix()
|
|
return (R.row_join(self.t)).col_join(sympy.Matrix(1, 4, [0, 0, 0, 1]))
|
|
|
|
def __mul__(self, right):
|
|
""" left-multiplication
|
|
either rotation concatenation or point-transform """
|
|
if isinstance(right, sympy.Matrix):
|
|
assert right.shape == (3, 1), right.shape
|
|
return self.so3 * right + self.t
|
|
elif isinstance(right, Se3):
|
|
r = self.so3 * right.so3
|
|
t = self.t + self.so3 * right.t
|
|
return Se3(r, t)
|
|
assert False, "unsupported type: {0}".format(type(right))
|
|
|
|
def __getitem__(self, key):
|
|
""" We use the following convention [q0, q1, q2, q3, t0, t1, t2] """
|
|
assert (key >= 0 and key < 7)
|
|
if key < 4:
|
|
return self.so3[key]
|
|
else:
|
|
return self.t[key - 4]
|
|
|
|
@staticmethod
|
|
def calc_Dx_exp_x(x):
|
|
return sympy.Matrix(7, 6, lambda r, c:
|
|
sympy.diff(Se3.exp(x)[r], x[c]))
|
|
|
|
@staticmethod
|
|
def Dx_exp_x_at_0():
|
|
return sympy.Matrix([[0.0, 0.0, 0.0, 0.5, 0.0, 0.0],
|
|
[0.0, 0.0, 0.0, 0.0, 0.5, 0.0],
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.5],
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0]])
|
|
|
|
def calc_Dx_this_mul_exp_x_at_0(self, x):
|
|
v = Se3.exp(x)
|
|
return sympy.Matrix(7, 6, lambda r, c:
|
|
sympy.diff((self * Se3.exp(x))[r], x[c])). \
|
|
subs(x[0], 0).subs(x[1], 0).subs(x[2], 0).\
|
|
subs(x[3], 0).subs(x[4], 0).limit(x[5], 0)
|
|
|
|
@staticmethod
|
|
def calc_Dx_exp_x_at_0(x):
|
|
return Se3.calc_Dx_exp_x(x).subs(x[0], 0).subs(x[1], 0).subs(x[2], 0).\
|
|
subs(x[3], 0).subs(x[4], 0).limit(x[5], 0)
|
|
|
|
@staticmethod
|
|
def Dxi_x_matrix(x, i):
|
|
if i < 4:
|
|
return sophus.So3.Dxi_x_matrix(x, i).\
|
|
row_join(sympy.Matrix.zeros(3, 1)).\
|
|
col_join(sympy.Matrix.zeros(1, 4))
|
|
M = sympy.Matrix.zeros(4, 4)
|
|
M[i - 4, 3] = 1
|
|
return M
|
|
|
|
@staticmethod
|
|
def calc_Dxi_x_matrix(x, i):
|
|
return sympy.Matrix(4, 4, lambda r, c:
|
|
sympy.diff(x.matrix()[r, c], x[i]))
|
|
|
|
@staticmethod
|
|
def Dxi_exp_x_matrix(x, i):
|
|
T = Se3.exp(x)
|
|
Dx_exp_x = Se3.calc_Dx_exp_x(x)
|
|
l = [Dx_exp_x[j, i] * Se3.Dxi_x_matrix(T, j) for j in range(0, 7)]
|
|
return functools.reduce((lambda a, b: a + b), l)
|
|
|
|
@staticmethod
|
|
def calc_Dxi_exp_x_matrix(x, i):
|
|
return sympy.Matrix(4, 4, lambda r, c:
|
|
sympy.diff(Se3.exp(x).matrix()[r, c], x[i]))
|
|
|
|
@staticmethod
|
|
def Dxi_exp_x_matrix_at_0(i):
|
|
v = sophus.ZeroVector6()
|
|
v[i] = 1
|
|
return Se3.hat(v)
|
|
|
|
@staticmethod
|
|
def calc_Dxi_exp_x_matrix_at_0(x, i):
|
|
return sympy.Matrix(4, 4, lambda r, c:
|
|
sympy.diff(Se3.exp(x).matrix()[r, c], x[i])
|
|
).subs(x[0], 0).subs(x[1], 0).subs(x[2], 0).\
|
|
subs(x[3], 0).subs(x[4], 0).limit(x[5], 0)
|
|
|
|
|
|
class TestSe3(unittest.TestCase):
|
|
def setUp(self):
|
|
upsilon0, upsilon1, upsilon2, omega0, omega1, omega2 = sympy.symbols(
|
|
'upsilon[0], upsilon[1], upsilon[2], omega[0], omega[1], omega[2]',
|
|
real=True)
|
|
x, v0, v1, v2 = sympy.symbols('q.w() q.x() q.y() q.z()', real=True)
|
|
p0, p1, p2 = sympy.symbols('p0 p1 p2', real=True)
|
|
t0, t1, t2 = sympy.symbols('t[0] t[1] t[2]', real=True)
|
|
v = sophus.Vector3(v0, v1, v2)
|
|
self.upsilon_omega = sophus.Vector6(
|
|
upsilon0, upsilon1, upsilon2, omega0, omega1, omega2)
|
|
self.t = sophus.Vector3(t0, t1, t2)
|
|
self.a = Se3(sophus.So3(sophus.Quaternion(x, v)), self.t)
|
|
self.p = sophus.Vector3(p0, p1, p2)
|
|
|
|
def test_exp_log(self):
|
|
for v in [sophus.Vector6(0., 1, 0.5, 2., 1, 0.5),
|
|
sophus.Vector6(0.1, 0.1, 0.1, 0., 1, 0.5),
|
|
sophus.Vector6(0.01, 0.2, 0.03, 0.01, 0.2, 0.03)]:
|
|
w = Se3.exp(v).log()
|
|
for i in range(0, 3):
|
|
self.assertAlmostEqual(v[i], w[i])
|
|
|
|
def test_matrix(self):
|
|
T_foo_bar = Se3.exp(self.upsilon_omega)
|
|
Tmat_foo_bar = T_foo_bar.matrix()
|
|
point_bar = self.p
|
|
p1_foo = T_foo_bar * point_bar
|
|
p2_foo = sophus.proj(Tmat_foo_bar * sophus.unproj(point_bar))
|
|
self.assertEqual(sympy.simplify(p1_foo - p2_foo),
|
|
sophus.ZeroVector3())
|
|
|
|
def test_derivatives(self):
|
|
self.assertEqual(sympy.simplify(
|
|
Se3.calc_Dx_exp_x_at_0(self.upsilon_omega) -
|
|
Se3.Dx_exp_x_at_0()),
|
|
sympy.Matrix.zeros(7, 6))
|
|
|
|
for i in range(0, 7):
|
|
self.assertEqual(sympy.simplify(Se3.calc_Dxi_x_matrix(self.a, i) -
|
|
Se3.Dxi_x_matrix(self.a, i)),
|
|
sympy.Matrix.zeros(4, 4))
|
|
for i in range(0, 6):
|
|
self.assertEqual(sympy.simplify(
|
|
Se3.Dxi_exp_x_matrix(self.upsilon_omega, i) -
|
|
Se3.calc_Dxi_exp_x_matrix(self.upsilon_omega, i)),
|
|
sympy.Matrix.zeros(4, 4))
|
|
self.assertEqual(sympy.simplify(
|
|
Se3.Dxi_exp_x_matrix_at_0(i) -
|
|
Se3.calc_Dxi_exp_x_matrix_at_0(self.upsilon_omega, i)),
|
|
sympy.Matrix.zeros(4, 4))
|
|
|
|
def test_codegen(self):
|
|
stream = sophus.cse_codegen(self.a.calc_Dx_exp_x(self.upsilon_omega))
|
|
filename = "cpp_gencode/Se3_Dx_exp_x.cpp"
|
|
# set to true to generate codegen files
|
|
if False:
|
|
file = open(filename, "w")
|
|
for line in stream:
|
|
file.write(line)
|
|
file.close()
|
|
else:
|
|
file = open(filename, "r")
|
|
file_lines = file.readlines()
|
|
for i, line in enumerate(stream):
|
|
self.assertEqual(line, file_lines[i])
|
|
file.close()
|
|
stream.close
|
|
|
|
stream = sophus.cse_codegen(self.a.calc_Dx_this_mul_exp_x_at_0(
|
|
self.upsilon_omega))
|
|
filename = "cpp_gencode/Se3_Dx_this_mul_exp_x_at_0.cpp"
|
|
# set to true to generate codegen files
|
|
if False:
|
|
file = open(filename, "w")
|
|
for line in stream:
|
|
file.write(line)
|
|
file.close()
|
|
else:
|
|
file = open(filename, "r")
|
|
file_lines = file.readlines()
|
|
for i, line in enumerate(stream):
|
|
self.assertEqual(line, file_lines[i])
|
|
file.close()
|
|
stream.close
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|