point-cloud-visualization/point_visual/sdk/src/rplidar_driver.cpp

2182 lines
71 KiB
C++
Raw Normal View History

2023-09-15 20:40:34 +08:00
/*
* RPLIDAR SDK
*
* Copyright (c) 2009 - 2014 RoboPeak Team
* http://www.robopeak.com
* Copyright (c) 2014 - 2018 Shanghai Slamtec Co., Ltd.
* http://www.slamtec.com
*
*/
/*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdkcommon.h"
#include "hal/abs_rxtx.h"
#include "hal/thread.h"
#include "hal/types.h"
#include "hal/assert.h"
#include "hal/locker.h"
#include "hal/socket.h"
#include "hal/event.h"
#include "rplidar_driver_impl.h"
#include "rplidar_driver_serial.h"
#include "rplidar_driver_TCP.h"
#include <algorithm>
#ifndef min
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
namespace rp { namespace standalone{ namespace rplidar {
#define DEPRECATED_WARN(fn, replacement) do { \
static bool __shown__ = false; \
if (!__shown__) { \
printDeprecationWarn(fn, replacement); \
__shown__ = true; \
} \
} while (0)
static void printDeprecationWarn(const char* fn, const char* replacement)
{
fprintf(stderr, "*WARN* YOU ARE USING DEPRECATED API: %s, PLEASE MOVE TO %s\n", fn, replacement);
}
static void convert(const rplidar_response_measurement_node_t& from, rplidar_response_measurement_node_hq_t& to)
{
to.angle_z_q14 = (((from.angle_q6_checkbit) >> RPLIDAR_RESP_MEASUREMENT_ANGLE_SHIFT) << 8) / 90; //transfer to q14 Z-angle
to.dist_mm_q2 = from.distance_q2;
to.flag = (from.sync_quality & RPLIDAR_RESP_MEASUREMENT_SYNCBIT); // trasfer syncbit to HQ flag field
to.quality = (from.sync_quality >> RPLIDAR_RESP_MEASUREMENT_QUALITY_SHIFT) << RPLIDAR_RESP_MEASUREMENT_QUALITY_SHIFT; //remove the last two bits and then make quality from 0-63 to 0-255
}
static void convert(const rplidar_response_measurement_node_hq_t& from, rplidar_response_measurement_node_t& to)
{
to.sync_quality = (from.flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT) | ((from.quality >> RPLIDAR_RESP_MEASUREMENT_QUALITY_SHIFT) << RPLIDAR_RESP_MEASUREMENT_QUALITY_SHIFT);
to.angle_q6_checkbit = 1 | (((from.angle_z_q14 * 90) >> 8) << RPLIDAR_RESP_MEASUREMENT_ANGLE_SHIFT);
to.distance_q2 = from.dist_mm_q2 > _u16(-1) ? _u16(0) : _u16(from.dist_mm_q2);
}
// Factory Impl
RPlidarDriver * RPlidarDriver::CreateDriver(_u32 drivertype)
{
switch (drivertype) {
case DRIVER_TYPE_SERIALPORT:
return new RPlidarDriverSerial();
case DRIVER_TYPE_TCP:
return new RPlidarDriverTCP();
default:
return NULL;
}
}
void RPlidarDriver::DisposeDriver(RPlidarDriver * drv)
{
delete drv;
}
RPlidarDriverImplCommon::RPlidarDriverImplCommon()
: _isConnected(false)
, _isScanning(false)
, _isSupportingMotorCtrl(false)
{
_cached_scan_node_hq_count = 0;
_cached_scan_node_hq_count_for_interval_retrieve = 0;
_cached_sampleduration_std = LEGACY_SAMPLE_DURATION;
_cached_sampleduration_express = LEGACY_SAMPLE_DURATION;
}
bool RPlidarDriverImplCommon::isConnected()
{
return _isConnected;
}
u_result RPlidarDriverImplCommon::reset(_u32 timeout)
{
u_result ans;
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_RESET))) {
return ans;
}
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::_waitResponseHeader(rplidar_ans_header_t * header, _u32 timeout)
{
int recvPos = 0;
_u32 startTs = getms();
_u8 recvBuffer[sizeof(rplidar_ans_header_t)];
_u8 *headerBuffer = reinterpret_cast<_u8 *>(header);
_u32 waitTime;
while ((waitTime=getms() - startTs) <= timeout) {
size_t remainSize = sizeof(rplidar_ans_header_t) - recvPos;
size_t recvSize;
bool ans = _chanDev->waitfordata(remainSize, timeout - waitTime, &recvSize);
if(!ans) return RESULT_OPERATION_TIMEOUT;
if(recvSize > remainSize) recvSize = remainSize;
recvSize = _chanDev->recvdata(recvBuffer, recvSize);
for (size_t pos = 0; pos < recvSize; ++pos) {
_u8 currentByte = recvBuffer[pos];
switch (recvPos) {
case 0:
if (currentByte != RPLIDAR_ANS_SYNC_BYTE1) {
continue;
}
break;
case 1:
if (currentByte != RPLIDAR_ANS_SYNC_BYTE2) {
recvPos = 0;
continue;
}
break;
}
headerBuffer[recvPos++] = currentByte;
if (recvPos == sizeof(rplidar_ans_header_t)) {
return RESULT_OK;
}
}
}
return RESULT_OPERATION_TIMEOUT;
}
u_result RPlidarDriverImplCommon::getHealth(rplidar_response_device_health_t & healthinfo, _u32 timeout)
{
u_result ans;
if (!isConnected()) return RESULT_OPERATION_FAIL;
_disableDataGrabbing();
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_GET_DEVICE_HEALTH))) {
return ans;
}
rplidar_ans_header_t response_header;
if (IS_FAIL(ans = _waitResponseHeader(&response_header, timeout))) {
return ans;
}
// verify whether we got a correct header
if (response_header.type != RPLIDAR_ANS_TYPE_DEVHEALTH) {
return RESULT_INVALID_DATA;
}
_u32 header_size = (response_header.size_q30_subtype & RPLIDAR_ANS_HEADER_SIZE_MASK);
if ( header_size < sizeof(rplidar_response_device_health_t)) {
return RESULT_INVALID_DATA;
}
if (!_chanDev->waitfordata(header_size, timeout)) {
return RESULT_OPERATION_TIMEOUT;
}
_chanDev->recvdata(reinterpret_cast<_u8 *>(&healthinfo), sizeof(healthinfo));
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::getDeviceInfo(rplidar_response_device_info_t & info, _u32 timeout)
{
u_result ans;
if (!isConnected()) return RESULT_OPERATION_FAIL;
_disableDataGrabbing();
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_GET_DEVICE_INFO))) {
return ans;
}
rplidar_ans_header_t response_header;
if (IS_FAIL(ans = _waitResponseHeader(&response_header, timeout))) {
return ans;
}
// verify whether we got a correct header
if (response_header.type != RPLIDAR_ANS_TYPE_DEVINFO) {
return RESULT_INVALID_DATA;
}
_u32 header_size = (response_header.size_q30_subtype & RPLIDAR_ANS_HEADER_SIZE_MASK);
if (header_size < sizeof(rplidar_response_device_info_t)) {
return RESULT_INVALID_DATA;
}
if (!_chanDev->waitfordata(header_size, timeout)) {
return RESULT_OPERATION_TIMEOUT;
}
_chanDev->recvdata(reinterpret_cast<_u8 *>(&info), sizeof(info));
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::getFrequency(bool inExpressMode, size_t count, float & frequency, bool & is4kmode)
{
DEPRECATED_WARN("getFrequency(bool,size_t,float&,bool&)", "getFrequency(const RplidarScanMode&,size_t,float&)");
_u16 sample_duration = inExpressMode?_cached_sampleduration_express:_cached_sampleduration_std;
frequency = 1000000.0f/(count * sample_duration);
if (sample_duration <= 277) {
is4kmode = true;
} else {
is4kmode = false;
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::getFrequency(const RplidarScanMode& scanMode, size_t count, float & frequency)
{
float sample_duration = scanMode.us_per_sample;
frequency = 1000000.0f / (count * sample_duration);
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::_waitNode(rplidar_response_measurement_node_t * node, _u32 timeout)
{
int recvPos = 0;
_u32 startTs = getms();
_u8 recvBuffer[sizeof(rplidar_response_measurement_node_t)];
_u8 *nodeBuffer = (_u8*)node;
_u32 waitTime;
while ((waitTime=getms() - startTs) <= timeout) {
size_t remainSize = sizeof(rplidar_response_measurement_node_t) - recvPos;
size_t recvSize;
bool ans = _chanDev->waitfordata(remainSize, timeout-waitTime, &recvSize);
if(!ans) return RESULT_OPERATION_FAIL;
if (recvSize > remainSize) recvSize = remainSize;
recvSize = _chanDev->recvdata(recvBuffer, recvSize);
for (size_t pos = 0; pos < recvSize; ++pos) {
_u8 currentByte = recvBuffer[pos];
switch (recvPos) {
case 0: // expect the sync bit and its reverse in this byte
{
_u8 tmp = (currentByte>>1);
if ( (tmp ^ currentByte) & 0x1 ) {
// pass
} else {
continue;
}
}
break;
case 1: // expect the highest bit to be 1
{
if (currentByte & RPLIDAR_RESP_MEASUREMENT_CHECKBIT) {
// pass
} else {
recvPos = 0;
continue;
}
}
break;
}
nodeBuffer[recvPos++] = currentByte;
if (recvPos == sizeof(rplidar_response_measurement_node_t)) {
return RESULT_OK;
}
}
}
return RESULT_OPERATION_TIMEOUT;
}
u_result RPlidarDriverImplCommon::_waitScanData(rplidar_response_measurement_node_t * nodebuffer, size_t & count, _u32 timeout)
{
if (!_isConnected) {
count = 0;
return RESULT_OPERATION_FAIL;
}
size_t recvNodeCount = 0;
_u32 startTs = getms();
_u32 waitTime;
u_result ans;
while ((waitTime = getms() - startTs) <= timeout && recvNodeCount < count) {
rplidar_response_measurement_node_t node;
if (IS_FAIL(ans = _waitNode(&node, timeout - waitTime))) {
return ans;
}
nodebuffer[recvNodeCount++] = node;
if (recvNodeCount == count) return RESULT_OK;
}
count = recvNodeCount;
return RESULT_OPERATION_TIMEOUT;
}
u_result RPlidarDriverImplCommon::_waitCapsuledNode(rplidar_response_capsule_measurement_nodes_t & node, _u32 timeout)
{
int recvPos = 0;
_u32 startTs = getms();
_u8 recvBuffer[sizeof(rplidar_response_capsule_measurement_nodes_t)];
_u8 *nodeBuffer = (_u8*)&node;
_u32 waitTime;
while ((waitTime=getms() - startTs) <= timeout) {
size_t remainSize = sizeof(rplidar_response_capsule_measurement_nodes_t) - recvPos;
size_t recvSize;
bool ans = _chanDev->waitfordata(remainSize, timeout-waitTime, &recvSize);
if(!ans)
{
return RESULT_OPERATION_TIMEOUT;
}
if (recvSize > remainSize) recvSize = remainSize;
recvSize = _chanDev->recvdata(recvBuffer, recvSize);
for (size_t pos = 0; pos < recvSize; ++pos) {
_u8 currentByte = recvBuffer[pos];
switch (recvPos) {
case 0: // expect the sync bit 1
{
_u8 tmp = (currentByte>>4);
if ( tmp == RPLIDAR_RESP_MEASUREMENT_EXP_SYNC_1 ) {
// pass
} else {
_is_previous_capsuledataRdy = false;
continue;
}
}
break;
case 1: // expect the sync bit 2
{
_u8 tmp = (currentByte>>4);
if (tmp == RPLIDAR_RESP_MEASUREMENT_EXP_SYNC_2) {
// pass
} else {
recvPos = 0;
_is_previous_capsuledataRdy = false;
continue;
}
}
break;
}
nodeBuffer[recvPos++] = currentByte;
if (recvPos == sizeof(rplidar_response_capsule_measurement_nodes_t)) {
// calc the checksum ...
_u8 checksum = 0;
_u8 recvChecksum = ((node.s_checksum_1 & 0xF) | (node.s_checksum_2<<4));
for (size_t cpos = offsetof(rplidar_response_capsule_measurement_nodes_t, start_angle_sync_q6);
cpos < sizeof(rplidar_response_capsule_measurement_nodes_t); ++cpos)
{
checksum ^= nodeBuffer[cpos];
}
if (recvChecksum == checksum)
{
// only consider vaild if the checksum matches...
if (node.start_angle_sync_q6 & RPLIDAR_RESP_MEASUREMENT_EXP_SYNCBIT)
{
// this is the first capsule frame in logic, discard the previous cached data...
_is_previous_capsuledataRdy = false;
return RESULT_OK;
}
return RESULT_OK;
}
_is_previous_capsuledataRdy = false;
return RESULT_INVALID_DATA;
}
}
}
_is_previous_capsuledataRdy = false;
return RESULT_OPERATION_TIMEOUT;
}
u_result RPlidarDriverImplCommon::_waitUltraCapsuledNode(rplidar_response_ultra_capsule_measurement_nodes_t & node, _u32 timeout)
{
if (!_isConnected) {
return RESULT_OPERATION_FAIL;
}
int recvPos = 0;
_u32 startTs = getms();
_u8 recvBuffer[sizeof(rplidar_response_ultra_capsule_measurement_nodes_t)];
_u8 *nodeBuffer = (_u8*)&node;
_u32 waitTime;
while ((waitTime=getms() - startTs) <= timeout) {
size_t remainSize = sizeof(rplidar_response_ultra_capsule_measurement_nodes_t) - recvPos;
size_t recvSize;
bool ans = _chanDev->waitfordata(remainSize, timeout-waitTime, &recvSize);
if(!ans)
{
return RESULT_OPERATION_TIMEOUT;
}
if (recvSize > remainSize) recvSize = remainSize;
recvSize = _chanDev->recvdata(recvBuffer, recvSize);
for (size_t pos = 0; pos < recvSize; ++pos) {
_u8 currentByte = recvBuffer[pos];
switch (recvPos) {
case 0: // expect the sync bit 1
{
_u8 tmp = (currentByte>>4);
if ( tmp == RPLIDAR_RESP_MEASUREMENT_EXP_SYNC_1 ) {
// pass
}
else {
_is_previous_capsuledataRdy = false;
continue;
}
}
break;
case 1: // expect the sync bit 2
{
_u8 tmp = (currentByte>>4);
if (tmp == RPLIDAR_RESP_MEASUREMENT_EXP_SYNC_2) {
// pass
}
else {
recvPos = 0;
_is_previous_capsuledataRdy = false;
continue;
}
}
break;
}
nodeBuffer[recvPos++] = currentByte;
if (recvPos == sizeof(rplidar_response_ultra_capsule_measurement_nodes_t)) {
// calc the checksum ...
_u8 checksum = 0;
_u8 recvChecksum = ((node.s_checksum_1 & 0xF) | (node.s_checksum_2 << 4));
for (size_t cpos = offsetof(rplidar_response_ultra_capsule_measurement_nodes_t, start_angle_sync_q6);
cpos < sizeof(rplidar_response_ultra_capsule_measurement_nodes_t); ++cpos)
{
checksum ^= nodeBuffer[cpos];
}
if (recvChecksum == checksum)
{
// only consider vaild if the checksum matches...
if (node.start_angle_sync_q6 & RPLIDAR_RESP_MEASUREMENT_EXP_SYNCBIT)
{
// this is the first capsule frame in logic, discard the previous cached data...
_is_previous_capsuledataRdy = false;
return RESULT_OK;
}
return RESULT_OK;
}
_is_previous_capsuledataRdy = false;
return RESULT_INVALID_DATA;
}
}
}
_is_previous_capsuledataRdy = false;
return RESULT_OPERATION_TIMEOUT;
}
u_result RPlidarDriverImplCommon::_cacheScanData()
{
rplidar_response_measurement_node_t local_buf[128];
size_t count = 128;
rplidar_response_measurement_node_hq_t local_scan[MAX_SCAN_NODES];
size_t scan_count = 0;
u_result ans;
memset(local_scan, 0, sizeof(local_scan));
_waitScanData(local_buf, count); // // always discard the first data since it may be incomplete
while(_isScanning)
{
if (IS_FAIL(ans=_waitScanData(local_buf, count))) {
if (ans != RESULT_OPERATION_TIMEOUT) {
_isScanning = false;
return RESULT_OPERATION_FAIL;
}
}
for (size_t pos = 0; pos < count; ++pos)
{
if (local_buf[pos].sync_quality & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)
{
// only publish the data when it contains a full 360 degree scan
if ((local_scan[0].flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)) {
_lock.lock();
memcpy(_cached_scan_node_hq_buf, local_scan, scan_count*sizeof(rplidar_response_measurement_node_hq_t));
_cached_scan_node_hq_count = scan_count;
_dataEvt.set();
_lock.unlock();
}
scan_count = 0;
}
rplidar_response_measurement_node_hq_t nodeHq;
convert(local_buf[pos], nodeHq);
local_scan[scan_count++] = nodeHq;
if (scan_count == _countof(local_scan)) scan_count-=1; // prevent overflow
//for interval retrieve
{
rp::hal::AutoLocker l(_lock);
_cached_scan_node_hq_buf_for_interval_retrieve[_cached_scan_node_hq_count_for_interval_retrieve++] = nodeHq;
if(_cached_scan_node_hq_count_for_interval_retrieve == _countof(_cached_scan_node_hq_buf_for_interval_retrieve)) _cached_scan_node_hq_count_for_interval_retrieve-=1; // prevent overflow
}
}
}
_isScanning = false;
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::startScanNormal(bool force, _u32 timeout)
{
u_result ans;
if (!isConnected()) return RESULT_OPERATION_FAIL;
if (_isScanning) return RESULT_ALREADY_DONE;
stop(); //force the previous operation to stop
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(force?RPLIDAR_CMD_FORCE_SCAN:RPLIDAR_CMD_SCAN))) {
return ans;
}
// waiting for confirmation
rplidar_ans_header_t response_header;
if (IS_FAIL(ans = _waitResponseHeader(&response_header, timeout))) {
return ans;
}
// verify whether we got a correct header
if (response_header.type != RPLIDAR_ANS_TYPE_MEASUREMENT) {
return RESULT_INVALID_DATA;
}
_u32 header_size = (response_header.size_q30_subtype & RPLIDAR_ANS_HEADER_SIZE_MASK);
if (header_size < sizeof(rplidar_response_measurement_node_t)) {
return RESULT_INVALID_DATA;
}
_isScanning = true;
_cachethread = CLASS_THREAD(RPlidarDriverImplCommon, _cacheScanData);
if (_cachethread.getHandle() == 0) {
return RESULT_OPERATION_FAIL;
}
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::checkExpressScanSupported(bool & support, _u32 timeout)
{
DEPRECATED_WARN("checkExpressScanSupported(bool&,_u32)", "getAllSupportedScanModes()");
rplidar_response_device_info_t devinfo;
support = false;
u_result ans = getDeviceInfo(devinfo, timeout);
if (IS_FAIL(ans)) return ans;
if (devinfo.firmware_version >= ((0x1<<8) | 17)) {
support = true;
rplidar_response_sample_rate_t sample_rate;
getSampleDuration_uS(sample_rate);
_cached_sampleduration_express = sample_rate.express_sample_duration_us;
_cached_sampleduration_std = sample_rate.std_sample_duration_us;
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::_cacheCapsuledScanData()
{
rplidar_response_capsule_measurement_nodes_t capsule_node;
rplidar_response_measurement_node_hq_t local_buf[128];
size_t count = 128;
rplidar_response_measurement_node_hq_t local_scan[MAX_SCAN_NODES];
size_t scan_count = 0;
u_result ans;
memset(local_scan, 0, sizeof(local_scan));
_waitCapsuledNode(capsule_node); // // always discard the first data since it may be incomplete
while(_isScanning)
{
if (IS_FAIL(ans=_waitCapsuledNode(capsule_node))) {
if (ans != RESULT_OPERATION_TIMEOUT && ans != RESULT_INVALID_DATA) {
_isScanning = false;
return RESULT_OPERATION_FAIL;
} else {
// current data is invalid, do not use it.
continue;
}
}
_capsuleToNormal(capsule_node, local_buf, count);
for (size_t pos = 0; pos < count; ++pos)
{
if (local_buf[pos].flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)
{
// only publish the data when it contains a full 360 degree scan
if ((local_scan[0].flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)) {
_lock.lock();
memcpy(_cached_scan_node_hq_buf, local_scan, scan_count*sizeof(rplidar_response_measurement_node_hq_t));
_cached_scan_node_hq_count = scan_count;
_dataEvt.set();
_lock.unlock();
}
scan_count = 0;
}
local_scan[scan_count++] = local_buf[pos];
if (scan_count == _countof(local_scan)) scan_count-=1; // prevent overflow
//for interval retrieve
{
rp::hal::AutoLocker l(_lock);
_cached_scan_node_hq_buf_for_interval_retrieve[_cached_scan_node_hq_count_for_interval_retrieve++] = local_buf[pos];
if(_cached_scan_node_hq_count_for_interval_retrieve == _countof(_cached_scan_node_hq_buf_for_interval_retrieve)) _cached_scan_node_hq_count_for_interval_retrieve-=1; // prevent overflow
}
}
}
_isScanning = false;
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::_cacheUltraCapsuledScanData()
{
rplidar_response_ultra_capsule_measurement_nodes_t ultra_capsule_node;
rplidar_response_measurement_node_hq_t local_buf[128];
size_t count = 128;
rplidar_response_measurement_node_hq_t local_scan[MAX_SCAN_NODES];
size_t scan_count = 0;
u_result ans;
memset(local_scan, 0, sizeof(local_scan));
_waitUltraCapsuledNode(ultra_capsule_node);
while(_isScanning)
{
if (IS_FAIL(ans=_waitUltraCapsuledNode(ultra_capsule_node))) {
if (ans != RESULT_OPERATION_TIMEOUT && ans != RESULT_INVALID_DATA) {
_isScanning = false;
return RESULT_OPERATION_FAIL;
} else {
// current data is invalid, do not use it.
continue;
}
}
_ultraCapsuleToNormal(ultra_capsule_node, local_buf, count);
for (size_t pos = 0; pos < count; ++pos)
{
if (local_buf[pos].flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)
{
// only publish the data when it contains a full 360 degree scan
if ((local_scan[0].flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)) {
_lock.lock();
memcpy(_cached_scan_node_hq_buf, local_scan, scan_count*sizeof(rplidar_response_measurement_node_hq_t));
_cached_scan_node_hq_count = scan_count;
_dataEvt.set();
_lock.unlock();
}
scan_count = 0;
}
local_scan[scan_count++] = local_buf[pos];
if (scan_count == _countof(local_scan)) scan_count-=1; // prevent overflow
//for interval retrieve
{
rp::hal::AutoLocker l(_lock);
_cached_scan_node_hq_buf_for_interval_retrieve[_cached_scan_node_hq_count_for_interval_retrieve++] = local_buf[pos];
if(_cached_scan_node_hq_count_for_interval_retrieve == _countof(_cached_scan_node_hq_buf_for_interval_retrieve)) _cached_scan_node_hq_count_for_interval_retrieve-=1; // prevent overflow
}
}
}
_isScanning = false;
return RESULT_OK;
}
void RPlidarDriverImplCommon::_capsuleToNormal(const rplidar_response_capsule_measurement_nodes_t & capsule, rplidar_response_measurement_node_hq_t *nodebuffer, size_t &nodeCount)
{
nodeCount = 0;
if (_is_previous_capsuledataRdy) {
int diffAngle_q8;
int currentStartAngle_q8 = ((capsule.start_angle_sync_q6 & 0x7FFF)<< 2);
int prevStartAngle_q8 = ((_cached_previous_capsuledata.start_angle_sync_q6 & 0x7FFF) << 2);
diffAngle_q8 = (currentStartAngle_q8) - (prevStartAngle_q8);
if (prevStartAngle_q8 > currentStartAngle_q8) {
diffAngle_q8 += (360<<8);
}
int angleInc_q16 = (diffAngle_q8 << 3);
int currentAngle_raw_q16 = (prevStartAngle_q8 << 8);
for (size_t pos = 0; pos < _countof(_cached_previous_capsuledata.cabins); ++pos)
{
int dist_q2[2];
int angle_q6[2];
int syncBit[2];
dist_q2[0] = (_cached_previous_capsuledata.cabins[pos].distance_angle_1 & 0xFFFC);
dist_q2[1] = (_cached_previous_capsuledata.cabins[pos].distance_angle_2 & 0xFFFC);
int angle_offset1_q3 = ( (_cached_previous_capsuledata.cabins[pos].offset_angles_q3 & 0xF) | ((_cached_previous_capsuledata.cabins[pos].distance_angle_1 & 0x3)<<4));
int angle_offset2_q3 = ( (_cached_previous_capsuledata.cabins[pos].offset_angles_q3 >> 4) | ((_cached_previous_capsuledata.cabins[pos].distance_angle_2 & 0x3)<<4));
angle_q6[0] = ((currentAngle_raw_q16 - (angle_offset1_q3<<13))>>10);
syncBit[0] = (( (currentAngle_raw_q16 + angleInc_q16) % (360<<16)) < angleInc_q16 )?1:0;
currentAngle_raw_q16 += angleInc_q16;
angle_q6[1] = ((currentAngle_raw_q16 - (angle_offset2_q3<<13))>>10);
syncBit[1] = (( (currentAngle_raw_q16 + angleInc_q16) % (360<<16)) < angleInc_q16 )?1:0;
currentAngle_raw_q16 += angleInc_q16;
for (int cpos = 0; cpos < 2; ++cpos) {
if (angle_q6[cpos] < 0) angle_q6[cpos] += (360<<6);
if (angle_q6[cpos] >= (360<<6)) angle_q6[cpos] -= (360<<6);
rplidar_response_measurement_node_hq_t node;
node.angle_z_q14 = _u16((angle_q6[cpos] << 8) / 90);
node.flag = (syncBit[cpos] | ((!syncBit[cpos]) << 1));
node.quality = dist_q2[cpos] ? (0x2f << RPLIDAR_RESP_MEASUREMENT_QUALITY_SHIFT) : 0;
node.dist_mm_q2 = dist_q2[cpos];
nodebuffer[nodeCount++] = node;
}
}
}
_cached_previous_capsuledata = capsule;
_is_previous_capsuledataRdy = true;
}
//*******************************************HQ support********************************
u_result RPlidarDriverImplCommon::_cacheHqScanData()
{
rplidar_response_hq_capsule_measurement_nodes_t hq_node;
rplidar_response_measurement_node_hq_t local_buf[128];
size_t count = 128;
rplidar_response_measurement_node_hq_t local_scan[MAX_SCAN_NODES];
size_t scan_count = 0;
u_result ans;
memset(local_scan, 0, sizeof(local_scan));
_waitHqNode(hq_node);
while (_isScanning) {
if (IS_FAIL(ans = _waitHqNode(hq_node))) {
if (ans != RESULT_OPERATION_TIMEOUT && ans != RESULT_INVALID_DATA) {
_isScanning = false;
return RESULT_OPERATION_FAIL;
}
else {
// current data is invalid, do not use it.
continue;
}
}
_HqToNormal(hq_node, local_buf, count);
for (size_t pos = 0; pos < count; ++pos)
{
if (local_buf[pos].flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)
{
// only publish the data when it contains a full 360 degree scan
if ((local_scan[0].flag & RPLIDAR_RESP_MEASUREMENT_SYNCBIT)) {
_lock.lock();
memcpy(_cached_scan_node_hq_buf, local_scan, scan_count * sizeof(rplidar_response_measurement_node_hq_t));
_cached_scan_node_hq_count = scan_count;
_dataEvt.set();
_lock.unlock();
}
scan_count = 0;
}
local_scan[scan_count++] = local_buf[pos];
if (scan_count == _countof(local_scan)) scan_count -= 1; // prevent overflow
//for interval retrieve
{
rp::hal::AutoLocker l(_lock);
_cached_scan_node_hq_buf_for_interval_retrieve[_cached_scan_node_hq_count_for_interval_retrieve++] = local_buf[pos];
if (_cached_scan_node_hq_count_for_interval_retrieve == _countof(_cached_scan_node_hq_buf_for_interval_retrieve)) _cached_scan_node_hq_count_for_interval_retrieve -= 1; // prevent overflow
}
}
}
return RESULT_OK;
}
//CRC calculate
static _u32 table[256];//crc32_table
//reflect
static _u32 _bitrev(_u32 input, _u16 bw)
{
_u16 i;
_u32 var;
var = 0;
for (i = 0; i<bw; i++){
if (input & 0x01)
{
var |= 1 << (bw - 1 - i);
}
input >>= 1;
}
return var;
}
// crc32_table init
static void _crc32_init(_u32 poly)
{
_u16 i;
_u16 j;
_u32 c;
poly = _bitrev(poly, 32);
for (i = 0; i<256; i++){
c = i;
for (j = 0; j<8; j++){
if (c & 1)
c = poly ^ (c >> 1);
else
c = c >> 1;
}
table[i] = c;
}
}
static _u32 _crc32cal(_u32 crc, void* input, _u16 len)
{
_u16 i;
_u8 index;
_u8* pch;
pch = (unsigned char*)input;
_u8 leftBytes = 4 - len & 0x3;
for (i = 0; i<len; i++){
index = (unsigned char)(crc^*pch);
crc = (crc >> 8) ^ table[index];
pch++;
}
for (i = 0; i < leftBytes; i++) {//zero padding
index = (unsigned char)(crc^0);
crc = (crc >> 8) ^ table[index];
}
return crc^0xffffffff;
}
//crc32cal
static u_result _crc32(_u8 *ptr, _u32 len) {
static _u8 tmp;
if (tmp != 1) {
_crc32_init(0x4C11DB7);
tmp = 1;
}
return _crc32cal(0xFFFFFFFF, ptr,len);
}
u_result RPlidarDriverImplCommon::_waitHqNode(rplidar_response_hq_capsule_measurement_nodes_t & node, _u32 timeout)
{
if (!_isConnected) {
return RESULT_OPERATION_FAIL;
}
int recvPos = 0;
_u32 startTs = getms();
_u8 recvBuffer[sizeof(rplidar_response_hq_capsule_measurement_nodes_t)];
_u8 *nodeBuffer = (_u8*)&node;
_u32 waitTime;
while ((waitTime=getms() - startTs) <= timeout) {
size_t remainSize = sizeof(rplidar_response_hq_capsule_measurement_nodes_t) - recvPos;
size_t recvSize;
bool ans = _chanDev->waitfordata(remainSize, timeout-waitTime, &recvSize);
if(!ans)
{
return RESULT_OPERATION_TIMEOUT;
}
if (recvSize > remainSize) recvSize = remainSize;
recvSize = _chanDev->recvdata(recvBuffer, recvSize);
for (size_t pos = 0; pos < recvSize; ++pos) {
_u8 currentByte = recvBuffer[pos];
switch (recvPos) {
case 0: // expect the sync byte
{
_u8 tmp = (currentByte);
if ( tmp == RPLIDAR_RESP_MEASUREMENT_HQ_SYNC ) {
// pass
}
else {
recvPos = 0;
_is_previous_HqdataRdy = false;
continue;
}
}
break;
case sizeof(rplidar_response_hq_capsule_measurement_nodes_t) - 1 - 4:
{
}
break;
case sizeof(rplidar_response_hq_capsule_measurement_nodes_t) - 1:
{
}
break;
}
nodeBuffer[recvPos++] = currentByte;
if (recvPos == sizeof(rplidar_response_hq_capsule_measurement_nodes_t)) {
_u32 crcCalc2 = _crc32(nodeBuffer, sizeof(rplidar_response_hq_capsule_measurement_nodes_t) - 4);
if(crcCalc2 == node.crc32){
_is_previous_HqdataRdy = true;
return RESULT_OK;
}
else {
_is_previous_HqdataRdy = false;
return RESULT_INVALID_DATA;
}
}
}
}
_is_previous_HqdataRdy = false;
return RESULT_OPERATION_TIMEOUT;
}
void RPlidarDriverImplCommon::_HqToNormal(const rplidar_response_hq_capsule_measurement_nodes_t & node_hq, rplidar_response_measurement_node_hq_t *nodebuffer, size_t &nodeCount)
{
nodeCount = 0;
if (_is_previous_HqdataRdy) {
for (size_t pos = 0; pos < _countof(_cached_previous_Hqdata.node_hq); ++pos)
{
nodebuffer[nodeCount++] = node_hq.node_hq[pos];
}
}
_cached_previous_Hqdata = node_hq;
_is_previous_HqdataRdy = true;
}
//*******************************************HQ support********************************//
static _u32 _varbitscale_decode(_u32 scaled, _u32 & scaleLevel)
{
static const _u32 VBS_SCALED_BASE[] = {
RPLIDAR_VARBITSCALE_X16_DEST_VAL,
RPLIDAR_VARBITSCALE_X8_DEST_VAL,
RPLIDAR_VARBITSCALE_X4_DEST_VAL,
RPLIDAR_VARBITSCALE_X2_DEST_VAL,
0,
};
static const _u32 VBS_SCALED_LVL[] = {
4,
3,
2,
1,
0,
};
static const _u32 VBS_TARGET_BASE[] = {
(0x1 << RPLIDAR_VARBITSCALE_X16_SRC_BIT),
(0x1 << RPLIDAR_VARBITSCALE_X8_SRC_BIT),
(0x1 << RPLIDAR_VARBITSCALE_X4_SRC_BIT),
(0x1 << RPLIDAR_VARBITSCALE_X2_SRC_BIT),
0,
};
for (size_t i = 0; i < _countof(VBS_SCALED_BASE); ++i)
{
int remain = ((int)scaled - (int)VBS_SCALED_BASE[i]);
if (remain >= 0) {
scaleLevel = VBS_SCALED_LVL[i];
return VBS_TARGET_BASE[i] + (remain << scaleLevel);
}
}
return 0;
}
void RPlidarDriverImplCommon::_ultraCapsuleToNormal(const rplidar_response_ultra_capsule_measurement_nodes_t & capsule, rplidar_response_measurement_node_hq_t *nodebuffer, size_t &nodeCount)
{
nodeCount = 0;
if (_is_previous_capsuledataRdy) {
int diffAngle_q8;
int currentStartAngle_q8 = ((capsule.start_angle_sync_q6 & 0x7FFF) << 2);
int prevStartAngle_q8 = ((_cached_previous_ultracapsuledata.start_angle_sync_q6 & 0x7FFF) << 2);
diffAngle_q8 = (currentStartAngle_q8)-(prevStartAngle_q8);
if (prevStartAngle_q8 > currentStartAngle_q8) {
diffAngle_q8 += (360 << 8);
}
int angleInc_q16 = (diffAngle_q8 << 3) / 3;
int currentAngle_raw_q16 = (prevStartAngle_q8 << 8);
for (size_t pos = 0; pos < _countof(_cached_previous_ultracapsuledata.ultra_cabins); ++pos)
{
int dist_q2[3];
int angle_q6[3];
int syncBit[3];
_u32 combined_x3 = _cached_previous_ultracapsuledata.ultra_cabins[pos].combined_x3;
// unpack ...
int dist_major = (combined_x3 & 0xFFF);
// signed partical integer, using the magic shift here
// DO NOT TOUCH
int dist_predict1 = (((int)(combined_x3 << 10)) >> 22);
int dist_predict2 = (((int)combined_x3) >> 22);
int dist_major2;
_u32 scalelvl1, scalelvl2;
// prefetch next ...
if (pos == _countof(_cached_previous_ultracapsuledata.ultra_cabins) - 1)
{
dist_major2 = (capsule.ultra_cabins[0].combined_x3 & 0xFFF);
}
else {
dist_major2 = (_cached_previous_ultracapsuledata.ultra_cabins[pos + 1].combined_x3 & 0xFFF);
}
// decode with the var bit scale ...
dist_major = _varbitscale_decode(dist_major, scalelvl1);
dist_major2 = _varbitscale_decode(dist_major2, scalelvl2);
int dist_base1 = dist_major;
int dist_base2 = dist_major2;
if ((!dist_major) && dist_major2) {
dist_base1 = dist_major2;
scalelvl1 = scalelvl2;
}
dist_q2[0] = (dist_major << 2);
if ((dist_predict1 == 0xFFFFFE00) || (dist_predict1 == 0x1FF)) {
dist_q2[1] = 0;
} else {
dist_predict1 = (dist_predict1 << scalelvl1);
dist_q2[1] = (dist_predict1 + dist_base1) << 2;
}
if ((dist_predict2 == 0xFFFFFE00) || (dist_predict2 == 0x1FF)) {
dist_q2[2] = 0;
} else {
dist_predict2 = (dist_predict2 << scalelvl2);
dist_q2[2] = (dist_predict2 + dist_base2) << 2;
}
for (int cpos = 0; cpos < 3; ++cpos)
{
syncBit[cpos] = (((currentAngle_raw_q16 + angleInc_q16) % (360 << 16)) < angleInc_q16) ? 1 : 0;
int offsetAngleMean_q16 = (int)(7.5 * 3.1415926535 * (1 << 16) / 180.0);
if (dist_q2[cpos] >= (50 * 4))
{
const int k1 = 98361;
const int k2 = int(k1 / dist_q2[cpos]);
offsetAngleMean_q16 = (int)(8 * 3.1415926535 * (1 << 16) / 180) - (k2 << 6) - (k2 * k2 * k2) / 98304;
}
angle_q6[cpos] = ((currentAngle_raw_q16 - int(offsetAngleMean_q16 * 180 / 3.14159265)) >> 10);
currentAngle_raw_q16 += angleInc_q16;
if (angle_q6[cpos] < 0) angle_q6[cpos] += (360 << 6);
if (angle_q6[cpos] >= (360 << 6)) angle_q6[cpos] -= (360 << 6);
rplidar_response_measurement_node_hq_t node;
node.flag = (syncBit[cpos] | ((!syncBit[cpos]) << 1));
node.quality = dist_q2[cpos] ? (0x2F << RPLIDAR_RESP_MEASUREMENT_QUALITY_SHIFT) : 0;
node.angle_z_q14 = _u16((angle_q6[cpos] << 8) / 90);
node.dist_mm_q2 = dist_q2[cpos];
nodebuffer[nodeCount++] = node;
}
}
}
_cached_previous_ultracapsuledata = capsule;
_is_previous_capsuledataRdy = true;
}
u_result RPlidarDriverImplCommon::checkSupportConfigCommands(bool& outSupport, _u32 timeoutInMs)
{
u_result ans;
rplidar_response_device_info_t devinfo;
ans = getDeviceInfo(devinfo, timeoutInMs);
if (IS_FAIL(ans)) return ans;
// if lidar firmware >= 1.24
if (devinfo.firmware_version >= ((0x1 << 8) | 24)) {
outSupport = true;
}
return ans;
}
u_result RPlidarDriverImplCommon::getLidarConf(_u32 type, std::vector<_u8> &outputBuf, const std::vector<_u8> &reserve, _u32 timeout)
{
rplidar_payload_get_scan_conf_t query;
memset(&query, 0, sizeof(query));
query.type = type;
int sizeVec = reserve.size();
int maxLen = sizeof(query.reserved) / sizeof(query.reserved[0]);
if (sizeVec > maxLen) sizeVec = maxLen;
if (sizeVec > 0)
memcpy(query.reserved, &reserve[0], reserve.size());
u_result ans;
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_GET_LIDAR_CONF, &query, sizeof(query)))) {
return ans;
}
// waiting for confirmation
rplidar_ans_header_t response_header;
if (IS_FAIL(ans = _waitResponseHeader(&response_header, timeout))) {
return ans;
}
// verify whether we got a correct header
if (response_header.type != RPLIDAR_ANS_TYPE_GET_LIDAR_CONF) {
return RESULT_INVALID_DATA;
}
_u32 header_size = (response_header.size_q30_subtype & RPLIDAR_ANS_HEADER_SIZE_MASK);
if (header_size < sizeof(type)) {
return RESULT_INVALID_DATA;
}
if (!_chanDev->waitfordata(header_size, timeout)) {
return RESULT_OPERATION_TIMEOUT;
}
std::vector<_u8> dataBuf;
dataBuf.resize(header_size);
_chanDev->recvdata(reinterpret_cast<_u8 *>(&dataBuf[0]), header_size);
//check if returned type is same as asked type
_u32 replyType = -1;
memcpy(&replyType, &dataBuf[0], sizeof(type));
if (replyType != type) {
return RESULT_INVALID_DATA;
}
//copy all the payload into &outputBuf
int payLoadLen = header_size - sizeof(type);
//do consistency check
if (payLoadLen <= 0) {
return RESULT_INVALID_DATA;
}
//copy all payLoadLen bytes to outputBuf
outputBuf.resize(payLoadLen);
memcpy(&outputBuf[0], &dataBuf[0] + sizeof(type), payLoadLen);
}
return ans;
}
u_result RPlidarDriverImplCommon::getTypicalScanMode(_u16& outMode, _u32 timeoutInMs)
{
u_result ans;
std::vector<_u8> answer;
bool lidarSupportConfigCmds = false;
ans = checkSupportConfigCommands(lidarSupportConfigCmds);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
if (lidarSupportConfigCmds)
{
ans = getLidarConf(RPLIDAR_CONF_SCAN_MODE_TYPICAL, answer, std::vector<_u8>(), timeoutInMs);
if (IS_FAIL(ans)) {
return ans;
}
if (answer.size() < sizeof(_u16)) {
return RESULT_INVALID_DATA;
}
const _u16 *p_answer = reinterpret_cast<const _u16*>(&answer[0]);
outMode = *p_answer;
return ans;
}
//old version of triangle lidar
else
{
outMode = RPLIDAR_CONF_SCAN_COMMAND_EXPRESS;
return ans;
}
return ans;
}
u_result RPlidarDriverImplCommon::getLidarSampleDuration(float& sampleDurationRes, _u16 scanModeID, _u32 timeoutInMs)
{
u_result ans;
std::vector<_u8> reserve(2);
memcpy(&reserve[0], &scanModeID, sizeof(scanModeID));
std::vector<_u8> answer;
ans = getLidarConf(RPLIDAR_CONF_SCAN_MODE_US_PER_SAMPLE, answer, reserve, timeoutInMs);
if (IS_FAIL(ans))
{
return ans;
}
if (answer.size() < sizeof(_u32))
{
return RESULT_INVALID_DATA;
}
const _u32 *result = reinterpret_cast<const _u32*>(&answer[0]);
sampleDurationRes = (float)(*result >> 8);
return ans;
}
u_result RPlidarDriverImplCommon::getMaxDistance(float &maxDistance, _u16 scanModeID, _u32 timeoutInMs)
{
u_result ans;
std::vector<_u8> reserve(2);
memcpy(&reserve[0], &scanModeID, sizeof(scanModeID));
std::vector<_u8> answer;
ans = getLidarConf(RPLIDAR_CONF_SCAN_MODE_MAX_DISTANCE, answer, reserve, timeoutInMs);
if (IS_FAIL(ans))
{
return ans;
}
if (answer.size() < sizeof(_u32))
{
return RESULT_INVALID_DATA;
}
const _u32 *result = reinterpret_cast<const _u32*>(&answer[0]);
maxDistance = (float)(*result >> 8);
return ans;
}
u_result RPlidarDriverImplCommon::getScanModeAnsType(_u8 &ansType, _u16 scanModeID, _u32 timeoutInMs)
{
u_result ans;
std::vector<_u8> reserve(2);
memcpy(&reserve[0], &scanModeID, sizeof(scanModeID));
std::vector<_u8> answer;
ans = getLidarConf(RPLIDAR_CONF_SCAN_MODE_ANS_TYPE, answer, reserve, timeoutInMs);
if (IS_FAIL(ans))
{
return ans;
}
if (answer.size() < sizeof(_u8))
{
return RESULT_INVALID_DATA;
}
const _u8 *result = reinterpret_cast<const _u8*>(&answer[0]);
ansType = *result;
return ans;
}
u_result RPlidarDriverImplCommon::getScanModeName(char* modeName, _u16 scanModeID, _u32 timeoutInMs)
{
u_result ans;
std::vector<_u8> reserve(2);
memcpy(&reserve[0], &scanModeID, sizeof(scanModeID));
std::vector<_u8> answer;
ans = getLidarConf(RPLIDAR_CONF_SCAN_MODE_NAME, answer, reserve, timeoutInMs);
if (IS_FAIL(ans))
{
return ans;
}
int len = answer.size();
if (0 == len) return RESULT_INVALID_DATA;
memcpy(modeName, &answer[0], len);
return ans;
}
u_result RPlidarDriverImplCommon::getAllSupportedScanModes(std::vector<RplidarScanMode>& outModes, _u32 timeoutInMs)
{
u_result ans;
bool confProtocolSupported = false;
ans = checkSupportConfigCommands(confProtocolSupported);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
if (confProtocolSupported)
{
// 1. get scan mode count
_u16 modeCount;
ans = getScanModeCount(modeCount);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
// 2. for loop to get all fields of each scan mode
for (_u16 i = 0; i < modeCount; i++)
{
RplidarScanMode scanModeInfoTmp;
memset(&scanModeInfoTmp, 0, sizeof(scanModeInfoTmp));
scanModeInfoTmp.id = i;
ans = getLidarSampleDuration(scanModeInfoTmp.us_per_sample, i);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getMaxDistance(scanModeInfoTmp.max_distance, i);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getScanModeAnsType(scanModeInfoTmp.ans_type, i);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getScanModeName(scanModeInfoTmp.scan_mode, i);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
outModes.push_back(scanModeInfoTmp);
}
return ans;
}
else
{
rplidar_response_sample_rate_t sampleRateTmp;
ans = getSampleDuration_uS(sampleRateTmp);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
//judge if support express scan
bool ifSupportExpScan = false;
ans = checkExpressScanSupported(ifSupportExpScan);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
RplidarScanMode stdScanModeInfo;
stdScanModeInfo.id = RPLIDAR_CONF_SCAN_COMMAND_STD;
stdScanModeInfo.us_per_sample = sampleRateTmp.std_sample_duration_us;
stdScanModeInfo.max_distance = 16;
stdScanModeInfo.ans_type = RPLIDAR_ANS_TYPE_MEASUREMENT;
strcpy(stdScanModeInfo.scan_mode, "Standard");
outModes.push_back(stdScanModeInfo);
if (ifSupportExpScan)
{
RplidarScanMode expScanModeInfo;
expScanModeInfo.id = RPLIDAR_CONF_SCAN_COMMAND_EXPRESS;
expScanModeInfo.us_per_sample = sampleRateTmp.express_sample_duration_us;
expScanModeInfo.max_distance = 16;
expScanModeInfo.ans_type = RPLIDAR_ANS_TYPE_MEASUREMENT_CAPSULED;
strcpy(expScanModeInfo.scan_mode, "Express");
outModes.push_back(expScanModeInfo);
}
return ans;
}
return ans;
}
u_result RPlidarDriverImplCommon::getScanModeCount(_u16& modeCount, _u32 timeoutInMs)
{
u_result ans;
std::vector<_u8> answer;
ans = getLidarConf(RPLIDAR_CONF_SCAN_MODE_COUNT, answer, std::vector<_u8>(), timeoutInMs);
if (IS_FAIL(ans)) {
return ans;
}
if (answer.size() < sizeof(_u16)) {
return RESULT_INVALID_DATA;
}
const _u16 *p_answer = reinterpret_cast<const _u16*>(&answer[0]);
modeCount = *p_answer;
return ans;
}
u_result RPlidarDriverImplCommon::startScan(bool force, bool useTypicalScan, _u32 options, RplidarScanMode* outUsedScanMode)
{
u_result ans;
bool ifSupportLidarConf = false;
ans = checkSupportConfigCommands(ifSupportLidarConf);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
if (useTypicalScan)
{
//if support lidar config protocol
if (ifSupportLidarConf)
{
_u16 typicalMode;
ans = getTypicalScanMode(typicalMode);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
//call startScanExpress to do the job
return startScanExpress(false, typicalMode, 0, outUsedScanMode);
}
//if old version of triangle lidar
else
{
bool isExpScanSupported = false;
ans = checkExpressScanSupported(isExpScanSupported);
if (IS_FAIL(ans)) {
return ans;
}
if (isExpScanSupported)
{
return startScanExpress(false, RPLIDAR_CONF_SCAN_COMMAND_EXPRESS, 0, outUsedScanMode);
}
}
}
// 'useTypicalScan' is false, just use normal scan mode
if(ifSupportLidarConf)
{
if(outUsedScanMode)
{
outUsedScanMode->id = RPLIDAR_CONF_SCAN_COMMAND_STD;
ans = getLidarSampleDuration(outUsedScanMode->us_per_sample, outUsedScanMode->id);
if(IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getMaxDistance(outUsedScanMode->max_distance, outUsedScanMode->id);
if(IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getScanModeAnsType(outUsedScanMode->ans_type, outUsedScanMode->id);
if(IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getScanModeName(outUsedScanMode->scan_mode, outUsedScanMode->id);
if(IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
}
}
else
{
if(outUsedScanMode)
{
rplidar_response_sample_rate_t sampleRateTmp;
ans = getSampleDuration_uS(sampleRateTmp);
if(IS_FAIL(ans)) return RESULT_INVALID_DATA;
outUsedScanMode->us_per_sample = sampleRateTmp.std_sample_duration_us;
outUsedScanMode->max_distance = 16;
outUsedScanMode->ans_type = RPLIDAR_ANS_TYPE_MEASUREMENT;
strcpy(outUsedScanMode->scan_mode, "Standard");
}
}
return startScanNormal(force);
}
u_result RPlidarDriverImplCommon::startScanExpress(bool force, _u16 scanMode, _u32 options, RplidarScanMode* outUsedScanMode, _u32 timeout)
{
u_result ans;
if (!isConnected()) return RESULT_OPERATION_FAIL;
if (_isScanning) return RESULT_ALREADY_DONE;
stop(); //force the previous operation to stop
if (scanMode == RPLIDAR_CONF_SCAN_COMMAND_STD)
{
return startScan(force, false, 0, outUsedScanMode);
}
bool ifSupportLidarConf = false;
ans = checkSupportConfigCommands(ifSupportLidarConf);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
if (outUsedScanMode)
{
outUsedScanMode->id = scanMode;
if (ifSupportLidarConf)
{
ans = getLidarSampleDuration(outUsedScanMode->us_per_sample, outUsedScanMode->id);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getMaxDistance(outUsedScanMode->max_distance, outUsedScanMode->id);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getScanModeAnsType(outUsedScanMode->ans_type, outUsedScanMode->id);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
ans = getScanModeName(outUsedScanMode->scan_mode, outUsedScanMode->id);
if (IS_FAIL(ans))
{
return RESULT_INVALID_DATA;
}
}
else
{
rplidar_response_sample_rate_t sampleRateTmp;
ans = getSampleDuration_uS(sampleRateTmp);
if (IS_FAIL(ans)) return RESULT_INVALID_DATA;
outUsedScanMode->us_per_sample = sampleRateTmp.express_sample_duration_us;
outUsedScanMode->max_distance = 16;
outUsedScanMode->ans_type = RPLIDAR_ANS_TYPE_MEASUREMENT_CAPSULED;
strcpy(outUsedScanMode->scan_mode, "Express");
}
}
//get scan answer type to specify how to wait data
_u8 scanAnsType;
if (ifSupportLidarConf)
getScanModeAnsType(scanAnsType, scanMode);
else
scanAnsType = RPLIDAR_ANS_TYPE_MEASUREMENT_CAPSULED;
{
rp::hal::AutoLocker l(_lock);
rplidar_payload_express_scan_t scanReq;
memset(&scanReq, 0, sizeof(scanReq));
if (scanMode != RPLIDAR_CONF_SCAN_COMMAND_STD && scanMode != RPLIDAR_CONF_SCAN_COMMAND_EXPRESS)
scanReq.working_mode = _u8(scanMode);
scanReq.working_flags = options;
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_EXPRESS_SCAN, &scanReq, sizeof(scanReq)))) {
return ans;
}
// waiting for confirmation
rplidar_ans_header_t response_header;
if (IS_FAIL(ans = _waitResponseHeader(&response_header, timeout))) {
return ans;
}
// verify whether we got a correct header
if (response_header.type != scanAnsType) {
return RESULT_INVALID_DATA;
}
_u32 header_size = (response_header.size_q30_subtype & RPLIDAR_ANS_HEADER_SIZE_MASK);
if (scanAnsType == RPLIDAR_ANS_TYPE_MEASUREMENT_CAPSULED)
{
if (header_size < sizeof(rplidar_response_capsule_measurement_nodes_t)) {
return RESULT_INVALID_DATA;
}
_isScanning = true;
_cachethread = CLASS_THREAD(RPlidarDriverImplCommon, _cacheCapsuledScanData);
}else if(scanAnsType ==RPLIDAR_ANS_TYPE_MEASUREMENT_HQ ){
if (header_size < sizeof(rplidar_response_hq_capsule_measurement_nodes_t)) {
return RESULT_INVALID_DATA;
}
_isScanning = true;
_cachethread = CLASS_THREAD(RPlidarDriverImplCommon, _cacheHqScanData);
}
else
{
if (header_size < sizeof(rplidar_response_ultra_capsule_measurement_nodes_t)) {
return RESULT_INVALID_DATA;
}
_isScanning = true;
_cachethread = CLASS_THREAD(RPlidarDriverImplCommon, _cacheUltraCapsuledScanData);
}
if (_cachethread.getHandle() == 0) {
return RESULT_OPERATION_FAIL;
}
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::stop(_u32 timeout)
{
u_result ans;
_disableDataGrabbing();
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_STOP))) {
return ans;
}
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::grabScanData(rplidar_response_measurement_node_t * nodebuffer, size_t & count, _u32 timeout)
{
DEPRECATED_WARN("grabScanData()", "grabScanDataHq()");
switch (_dataEvt.wait(timeout))
{
case rp::hal::Event::EVENT_TIMEOUT:
count = 0;
return RESULT_OPERATION_TIMEOUT;
case rp::hal::Event::EVENT_OK:
{
if(_cached_scan_node_hq_count == 0) return RESULT_OPERATION_TIMEOUT; //consider as timeout
rp::hal::AutoLocker l(_lock);
size_t size_to_copy = min(count, _cached_scan_node_hq_count);
for (size_t i = 0; i < size_to_copy; i++)
convert(_cached_scan_node_hq_buf[i], nodebuffer[i]);
count = size_to_copy;
_cached_scan_node_hq_count = 0;
}
return RESULT_OK;
default:
count = 0;
return RESULT_OPERATION_FAIL;
}
}
u_result RPlidarDriverImplCommon::grabScanDataHq(rplidar_response_measurement_node_hq_t * nodebuffer, size_t & count, _u32 timeout)
{
switch (_dataEvt.wait(timeout))
{
case rp::hal::Event::EVENT_TIMEOUT:
count = 0;
return RESULT_OPERATION_TIMEOUT;
case rp::hal::Event::EVENT_OK:
{
if (_cached_scan_node_hq_count == 0) return RESULT_OPERATION_TIMEOUT; //consider as timeout
rp::hal::AutoLocker l(_lock);
size_t size_to_copy = min(count, _cached_scan_node_hq_count);
memcpy(nodebuffer, _cached_scan_node_hq_buf, size_to_copy * sizeof(rplidar_response_measurement_node_hq_t));
count = size_to_copy;
_cached_scan_node_hq_count = 0;
}
return RESULT_OK;
default:
count = 0;
return RESULT_OPERATION_FAIL;
}
}
u_result RPlidarDriverImplCommon::getScanDataWithInterval(rplidar_response_measurement_node_t * nodebuffer, size_t & count)
{
DEPRECATED_WARN("getScanDataWithInterval(rplidar_response_measurement_node_t*, size_t&)", "getScanDataWithInterval(rplidar_response_measurement_node_hq_t*, size_t&)");
size_t size_to_copy = 0;
{
rp::hal::AutoLocker l(_lock);
if(_cached_scan_node_hq_count_for_interval_retrieve == 0)
{
return RESULT_OPERATION_TIMEOUT;
}
//copy all the nodes(_cached_scan_node_count_for_interval_retrieve nodes) in _cached_scan_node_buf_for_interval_retrieve
size_to_copy = _cached_scan_node_hq_count_for_interval_retrieve;
for (size_t i = 0; i < size_to_copy; i++)
{
convert(_cached_scan_node_hq_buf_for_interval_retrieve[i], nodebuffer[i]);
}
_cached_scan_node_hq_count_for_interval_retrieve = 0;
}
count = size_to_copy;
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::getScanDataWithIntervalHq(rplidar_response_measurement_node_hq_t * nodebuffer, size_t & count)
{
size_t size_to_copy = 0;
{
rp::hal::AutoLocker l(_lock);
if (_cached_scan_node_hq_count_for_interval_retrieve == 0)
{
return RESULT_OPERATION_TIMEOUT;
}
//copy all the nodes(_cached_scan_node_count_for_interval_retrieve nodes) in _cached_scan_node_buf_for_interval_retrieve
size_to_copy = _cached_scan_node_hq_count_for_interval_retrieve;
memcpy(nodebuffer, _cached_scan_node_hq_buf_for_interval_retrieve, size_to_copy * sizeof(rplidar_response_measurement_node_hq_t));
_cached_scan_node_hq_count_for_interval_retrieve = 0;
}
count = size_to_copy;
return RESULT_OK;
}
static inline float getAngle(const rplidar_response_measurement_node_t& node)
{
return (node.angle_q6_checkbit >> RPLIDAR_RESP_MEASUREMENT_ANGLE_SHIFT) / 64.f;
}
static inline void setAngle(rplidar_response_measurement_node_t& node, float v)
{
_u16 checkbit = node.angle_q6_checkbit & RPLIDAR_RESP_MEASUREMENT_CHECKBIT;
node.angle_q6_checkbit = (((_u16)(v * 64.0f)) << RPLIDAR_RESP_MEASUREMENT_ANGLE_SHIFT) | checkbit;
}
static inline float getAngle(const rplidar_response_measurement_node_hq_t& node)
{
return node.angle_z_q14 * 90.f / 16384.f;
}
static inline void setAngle(rplidar_response_measurement_node_hq_t& node, float v)
{
node.angle_z_q14 = _u32(v * 16384.f / 90.f);
}
static inline _u16 getDistanceQ2(const rplidar_response_measurement_node_t& node)
{
return node.distance_q2;
}
static inline _u32 getDistanceQ2(const rplidar_response_measurement_node_hq_t& node)
{
return node.dist_mm_q2;
}
template <class TNode>
static bool angleLessThan(const TNode& a, const TNode& b)
{
return getAngle(a) < getAngle(b);
}
template < class TNode >
static u_result ascendScanData_(TNode * nodebuffer, size_t count)
{
float inc_origin_angle = 360.f/count;
size_t i = 0;
//Tune head
for (i = 0; i < count; i++) {
if(getDistanceQ2(nodebuffer[i]) == 0) {
continue;
} else {
while(i != 0) {
i--;
float expect_angle = getAngle(nodebuffer[i+1]) - inc_origin_angle;
if (expect_angle < 0.0f) expect_angle = 0.0f;
setAngle(nodebuffer[i], expect_angle);
}
break;
}
}
// all the data is invalid
if (i == count) return RESULT_OPERATION_FAIL;
//Tune tail
for (i = count - 1; i >= 0; i--) {
if(getDistanceQ2(nodebuffer[i]) == 0) {
continue;
} else {
while(i != (count - 1)) {
i++;
float expect_angle = getAngle(nodebuffer[i-1]) + inc_origin_angle;
if (expect_angle > 360.0f) expect_angle -= 360.0f;
setAngle(nodebuffer[i], expect_angle);
}
break;
}
}
//Fill invalid angle in the scan
float frontAngle = getAngle(nodebuffer[0]);
for (i = 1; i < count; i++) {
if(getDistanceQ2(nodebuffer[i]) == 0) {
float expect_angle = frontAngle + i * inc_origin_angle;
if (expect_angle > 360.0f) expect_angle -= 360.0f;
setAngle(nodebuffer[i], expect_angle);
}
}
// Reorder the scan according to the angle value
std::sort(nodebuffer, nodebuffer + count, &angleLessThan<TNode>);
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::ascendScanData(rplidar_response_measurement_node_t * nodebuffer, size_t count)
{
DEPRECATED_WARN("ascendScanData(rplidar_response_measurement_node_t*, size_t)", "ascendScanData(rplidar_response_measurement_node_hq_t*, size_t)");
return ascendScanData_<rplidar_response_measurement_node_t>(nodebuffer, count);
}
u_result RPlidarDriverImplCommon::ascendScanData(rplidar_response_measurement_node_hq_t * nodebuffer, size_t count)
{
return ascendScanData_<rplidar_response_measurement_node_hq_t>(nodebuffer, count);
}
u_result RPlidarDriverImplCommon::_sendCommand(_u8 cmd, const void * payload, size_t payloadsize)
{
_u8 pkt_header[10];
rplidar_cmd_packet_t * header = reinterpret_cast<rplidar_cmd_packet_t * >(pkt_header);
_u8 checksum = 0;
if (!_isConnected) return RESULT_OPERATION_FAIL;
if (payloadsize && payload) {
cmd |= RPLIDAR_CMDFLAG_HAS_PAYLOAD;
}
header->syncByte = RPLIDAR_CMD_SYNC_BYTE;
header->cmd_flag = cmd;
// send header first
_chanDev->senddata(pkt_header, 2) ;
if (cmd & RPLIDAR_CMDFLAG_HAS_PAYLOAD) {
checksum ^= RPLIDAR_CMD_SYNC_BYTE;
checksum ^= cmd;
checksum ^= (payloadsize & 0xFF);
// calc checksum
for (size_t pos = 0; pos < payloadsize; ++pos) {
checksum ^= ((_u8 *)payload)[pos];
}
// send size
_u8 sizebyte = payloadsize;
_chanDev->senddata(&sizebyte, 1);
// send payload
_chanDev->senddata((const _u8 *)payload, sizebyte);
// send checksum
_chanDev->senddata(&checksum, 1);
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::getSampleDuration_uS(rplidar_response_sample_rate_t & rateInfo, _u32 timeout)
{
DEPRECATED_WARN("getSampleDuration_uS", "RplidarScanMode::us_per_sample");
if (!isConnected()) return RESULT_OPERATION_FAIL;
_disableDataGrabbing();
rplidar_response_device_info_t devinfo;
// 1. fetch the device version first...
u_result ans = getDeviceInfo(devinfo, timeout);
rateInfo.express_sample_duration_us = _cached_sampleduration_express;
rateInfo.std_sample_duration_us = _cached_sampleduration_std;
if (devinfo.firmware_version < ((0x1<<8) | 17)) {
// provide fake data...
return RESULT_OK;
}
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_GET_SAMPLERATE))) {
return ans;
}
rplidar_ans_header_t response_header;
if (IS_FAIL(ans = _waitResponseHeader(&response_header, timeout))) {
return ans;
}
// verify whether we got a correct header
if (response_header.type != RPLIDAR_ANS_TYPE_SAMPLE_RATE) {
return RESULT_INVALID_DATA;
}
_u32 header_size = (response_header.size_q30_subtype & RPLIDAR_ANS_HEADER_SIZE_MASK);
if ( header_size < sizeof(rplidar_response_sample_rate_t)) {
return RESULT_INVALID_DATA;
}
if (!_chanDev->waitfordata(header_size, timeout)) {
return RESULT_OPERATION_TIMEOUT;
}
_chanDev->recvdata(reinterpret_cast<_u8 *>(&rateInfo), sizeof(rateInfo));
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::checkMotorCtrlSupport(bool & support, _u32 timeout)
{
u_result ans;
support = false;
if (!isConnected()) return RESULT_OPERATION_FAIL;
_disableDataGrabbing();
{
rp::hal::AutoLocker l(_lock);
rplidar_payload_acc_board_flag_t flag;
flag.reserved = 0;
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_GET_ACC_BOARD_FLAG, &flag, sizeof(flag)))) {
return ans;
}
rplidar_ans_header_t response_header;
if (IS_FAIL(ans = _waitResponseHeader(&response_header, timeout))) {
return ans;
}
// verify whether we got a correct header
if (response_header.type != RPLIDAR_ANS_TYPE_ACC_BOARD_FLAG) {
return RESULT_INVALID_DATA;
}
_u32 header_size = (response_header.size_q30_subtype & RPLIDAR_ANS_HEADER_SIZE_MASK);
if ( header_size < sizeof(rplidar_response_acc_board_flag_t)) {
return RESULT_INVALID_DATA;
}
if (!_chanDev->waitfordata(header_size, timeout)) {
return RESULT_OPERATION_TIMEOUT;
}
rplidar_response_acc_board_flag_t acc_board_flag;
_chanDev->recvdata(reinterpret_cast<_u8 *>(&acc_board_flag), sizeof(acc_board_flag));
if (acc_board_flag.support_flag & RPLIDAR_RESP_ACC_BOARD_FLAG_MOTOR_CTRL_SUPPORT_MASK) {
support = true;
}
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::setMotorPWM(_u16 pwm)
{
u_result ans;
rplidar_payload_motor_pwm_t motor_pwm;
motor_pwm.pwm_value = pwm;
{
rp::hal::AutoLocker l(_lock);
if (IS_FAIL(ans = _sendCommand(RPLIDAR_CMD_SET_MOTOR_PWM,(const _u8 *)&motor_pwm, sizeof(motor_pwm)))) {
return ans;
}
}
return RESULT_OK;
}
u_result RPlidarDriverImplCommon::startMotor()
{
if (_isSupportingMotorCtrl) { // RPLIDAR A2
setMotorPWM(DEFAULT_MOTOR_PWM);
delay(500);
return RESULT_OK;
} else { // RPLIDAR A1
rp::hal::AutoLocker l(_lock);
_chanDev->clearDTR();
delay(500);
return RESULT_OK;
}
}
u_result RPlidarDriverImplCommon::stopMotor()
{
if (_isSupportingMotorCtrl) { // RPLIDAR A2
setMotorPWM(0);
delay(500);
return RESULT_OK;
} else { // RPLIDAR A1
rp::hal::AutoLocker l(_lock);
_chanDev->setDTR();
delay(500);
return RESULT_OK;
}
}
void RPlidarDriverImplCommon::_disableDataGrabbing()
{
_isScanning = false;
_cachethread.join();
}
// Serial Driver Impl
RPlidarDriverSerial::RPlidarDriverSerial()
{
_chanDev = new SerialChannelDevice();
}
RPlidarDriverSerial::~RPlidarDriverSerial()
{
// force disconnection
disconnect();
_chanDev->close();
_chanDev->ReleaseRxTx();
}
void RPlidarDriverSerial::disconnect()
{
if (!_isConnected) return ;
stop();
}
u_result RPlidarDriverSerial::connect(const char * port_path, _u32 baudrate, _u32 flag)
{
if (isConnected()) return RESULT_ALREADY_DONE;
if (!_chanDev) return RESULT_INSUFFICIENT_MEMORY;
{
rp::hal::AutoLocker l(_lock);
// establish the serial connection...
if (!_chanDev->bind(port_path, baudrate) || !_chanDev->open()) {
return RESULT_INVALID_DATA;
}
_chanDev->flush();
}
_isConnected = true;
checkMotorCtrlSupport(_isSupportingMotorCtrl);
stopMotor();
return RESULT_OK;
}
RPlidarDriverTCP::RPlidarDriverTCP()
{
_chanDev = new TCPChannelDevice();
}
RPlidarDriverTCP::~RPlidarDriverTCP()
{
// force disconnection
disconnect();
}
void RPlidarDriverTCP::disconnect()
{
if (!_isConnected) return ;
stop();
_chanDev->close();
}
u_result RPlidarDriverTCP::connect(const char * ipStr, _u32 port, _u32 flag)
{
if (isConnected()) return RESULT_ALREADY_DONE;
if (!_chanDev) return RESULT_INSUFFICIENT_MEMORY;
{
rp::hal::AutoLocker l(_lock);
// establish the serial connection...
if(!_chanDev->bind(ipStr, port))
return RESULT_INVALID_DATA;
}
_isConnected = true;
checkMotorCtrlSupport(_isSupportingMotorCtrl);
stopMotor();
return RESULT_OK;
}
}}}