point-cloud-visualization/point_visual/sdk/src/arch/linux/net_serial.cpp

477 lines
11 KiB
C++

/*
* RPLIDAR SDK
*
* Copyright (c) 2009 - 2014 RoboPeak Team
* http://www.robopeak.com
* Copyright (c) 2014 - 2018 Shanghai Slamtec Co., Ltd.
* http://www.slamtec.com
*
*/
/*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "arch/linux/arch_linux.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
// linux specific
#include <errno.h>
#include <fcntl.h>
#include <time.h>
#include "hal/types.h"
#include "arch/linux/net_serial.h"
#include <sys/select.h>
#include <algorithm>
//__GNUC__
#if defined(__GNUC__)
// for Linux extension
#include <asm/ioctls.h>
#include <asm/termbits.h>
#include <sys/ioctl.h>
extern "C" int tcflush(int fildes, int queue_selector);
#else
// for other standard UNIX
#include <termios.h>
#include <sys/ioctl.h>
#endif
namespace rp{ namespace arch{ namespace net{
raw_serial::raw_serial()
: rp::hal::serial_rxtx()
, _baudrate(0)
, _flags(0)
, serial_fd(-1)
{
_init();
}
raw_serial::~raw_serial()
{
close();
}
bool raw_serial::open()
{
return open(_portName, _baudrate, _flags);
}
bool raw_serial::bind(const char * portname, uint32_t baudrate, uint32_t flags)
{
strncpy(_portName, portname, sizeof(_portName));
_baudrate = baudrate;
_flags = flags;
return true;
}
bool raw_serial::open(const char * portname, uint32_t baudrate, uint32_t flags)
{
if (isOpened()) close();
serial_fd = ::open(portname, O_RDWR | O_NOCTTY | O_NDELAY);
if (serial_fd == -1) return false;
#if !defined(__GNUC__)
// for standard UNIX
struct termios options, oldopt;
tcgetattr(serial_fd, &oldopt);
bzero(&options,sizeof(struct termios));
// enable rx and tx
options.c_cflag |= (CLOCAL | CREAD);
_u32 termbaud = getTermBaudBitmap(baudrate);
if (termbaud == (_u32)-1) {
close();
return false;
}
cfsetispeed(&options, termbaud);
cfsetospeed(&options, termbaud);
options.c_cflag &= ~PARENB; //no checkbit
options.c_cflag &= ~CSTOPB; //1bit stop bit
options.c_cflag &= ~CRTSCTS; //no flow control
options.c_cflag &= ~CSIZE;
options.c_cflag |= CS8; /* Select 8 data bits */
#ifdef CNEW_RTSCTS
options.c_cflag &= ~CNEW_RTSCTS; // no hw flow control
#endif
options.c_iflag &= ~(IXON | IXOFF | IXANY); // no sw flow control
// raw input mode
options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
// raw output mode
options.c_oflag &= ~OPOST;
if (tcsetattr(serial_fd, TCSANOW, &options))
{
close();
return false;
}
#else
// using Linux extension ...
struct termios2 tio;
ioctl(serial_fd, TCGETS2, &tio);
bzero(&tio, sizeof(struct termios2));
tio.c_cflag = BOTHER;
tio.c_cflag |= (CLOCAL | CREAD | CS8); //8 bit no hardware handshake
tio.c_cflag &= ~CSTOPB; //1 stop bit
tio.c_cflag &= ~CRTSCTS; //No CTS
tio.c_cflag &= ~PARENB; //No Parity
#ifdef CNEW_RTSCTS
tio.c_cflag &= ~CNEW_RTSCTS; // no hw flow control
#endif
tio.c_iflag &= ~(IXON | IXOFF | IXANY); // no sw flow control
tio.c_cc[VMIN] = 0; //min chars to read
tio.c_cc[VTIME] = 0; //time in 1/10th sec wait
tio.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
// raw output mode
tio.c_oflag &= ~OPOST;
tio.c_ispeed = baudrate;
tio.c_ospeed = baudrate;
ioctl(serial_fd, TCSETS2, &tio);
#endif
tcflush(serial_fd, TCIFLUSH);
if (fcntl(serial_fd, F_SETFL, FNDELAY))
{
close();
return false;
}
_is_serial_opened = true;
_operation_aborted = false;
//Clear the DTR bit to let the motor spin
clearDTR();
do {
// create self pipeline for wait cancellation
if (pipe(_selfpipe) == -1) break;
int flags = fcntl(_selfpipe[0], F_GETFL);
if (flags == -1)
break;
flags |= O_NONBLOCK; /* Make read end nonblocking */
if (fcntl(_selfpipe[0], F_SETFL, flags) == -1)
break;
flags = fcntl(_selfpipe[1], F_GETFL);
if (flags == -1)
break;
flags |= O_NONBLOCK; /* Make write end nonblocking */
if (fcntl(_selfpipe[1], F_SETFL, flags) == -1)
break;
} while (0);
return true;
}
void raw_serial::close()
{
if (serial_fd != -1)
::close(serial_fd);
serial_fd = -1;
if (_selfpipe[0] != -1)
::close(_selfpipe[0]);
if (_selfpipe[1] != -1)
::close(_selfpipe[1]);
_selfpipe[0] = _selfpipe[1] = -1;
_operation_aborted = false;
_is_serial_opened = false;
}
int raw_serial::senddata(const unsigned char * data, size_t size)
{
// FIXME: non-block io should be used
if (!isOpened()) return 0;
if (data == NULL || size ==0) return 0;
size_t tx_len = 0;
required_tx_cnt = 0;
do {
int ans = ::write(serial_fd, data + tx_len, size-tx_len);
if (ans == -1) return tx_len;
tx_len += ans;
required_tx_cnt = tx_len;
}while (tx_len<size);
return tx_len;
}
int raw_serial::recvdata(unsigned char * data, size_t size)
{
if (!isOpened()) return 0;
int ans = ::read(serial_fd, data, size);
if (ans == -1) ans=0;
required_rx_cnt = ans;
return ans;
}
void raw_serial::flush( _u32 flags)
{
tcflush(serial_fd,TCIFLUSH);
}
int raw_serial::waitforsent(_u32 timeout, size_t * returned_size)
{
if (returned_size) *returned_size = required_tx_cnt;
return 0;
}
int raw_serial::waitforrecv(_u32 timeout, size_t * returned_size)
{
if (!isOpened() ) return -1;
if (returned_size) *returned_size = required_rx_cnt;
return 0;
}
int raw_serial::waitfordata(size_t data_count, _u32 timeout, size_t * returned_size)
{
size_t length = 0;
if (returned_size==NULL) returned_size=(size_t *)&length;
*returned_size = 0;
int max_fd;
fd_set input_set;
struct timeval timeout_val;
/* Initialize the input set */
FD_ZERO(&input_set);
FD_SET(serial_fd, &input_set);
if (_selfpipe[0] != -1)
FD_SET(_selfpipe[0], &input_set);
max_fd = std::max<int>(serial_fd, _selfpipe[0]) + 1;
/* Initialize the timeout structure */
timeout_val.tv_sec = timeout / 1000;
timeout_val.tv_usec = (timeout % 1000) * 1000;
if ( isOpened() )
{
if ( ioctl(serial_fd, FIONREAD, returned_size) == -1) return ANS_DEV_ERR;
if (*returned_size >= data_count)
{
return 0;
}
}
while ( isOpened() )
{
/* Do the select */
int n = ::select(max_fd, &input_set, NULL, NULL, &timeout_val);
if (n < 0)
{
// select error
*returned_size = 0;
return ANS_DEV_ERR;
}
else if (n == 0)
{
// time out
*returned_size =0;
return ANS_TIMEOUT;
}
else
{
if (FD_ISSET(_selfpipe[0], &input_set)) {
// require aborting the current operation
int ch;
for (;;) {
if (::read(_selfpipe[0], &ch, 1) == -1) {
break;
}
}
// treat as timeout
*returned_size = 0;
return ANS_TIMEOUT;
}
// data avaliable
assert (FD_ISSET(serial_fd, &input_set));
if ( ioctl(serial_fd, FIONREAD, returned_size) == -1) return ANS_DEV_ERR;
if (*returned_size >= data_count)
{
return 0;
}
else
{
int remain_timeout = timeout_val.tv_sec*1000000 + timeout_val.tv_usec;
int expect_remain_time = (data_count - *returned_size)*1000000*8/_baudrate;
if (remain_timeout > expect_remain_time)
usleep(expect_remain_time);
}
}
}
return ANS_DEV_ERR;
}
size_t raw_serial::rxqueue_count()
{
if ( !isOpened() ) return 0;
size_t remaining;
if (::ioctl(serial_fd, FIONREAD, &remaining) == -1) return 0;
return remaining;
}
void raw_serial::setDTR()
{
if ( !isOpened() ) return;
uint32_t dtr_bit = TIOCM_DTR;
ioctl(serial_fd, TIOCMBIS, &dtr_bit);
}
void raw_serial::clearDTR()
{
if ( !isOpened() ) return;
uint32_t dtr_bit = TIOCM_DTR;
ioctl(serial_fd, TIOCMBIC, &dtr_bit);
}
void raw_serial::_init()
{
serial_fd = -1;
_portName[0] = 0;
required_tx_cnt = required_rx_cnt = 0;
_operation_aborted = false;
_selfpipe[0] = _selfpipe[1] = -1;
}
void raw_serial::cancelOperation()
{
_operation_aborted = true;
if (_selfpipe[1] == -1) return;
::write(_selfpipe[1], "x", 1);
}
_u32 raw_serial::getTermBaudBitmap(_u32 baud)
{
#define BAUD_CONV( _baud_) case _baud_: return B##_baud_
switch (baud) {
BAUD_CONV(1200);
BAUD_CONV(1800);
BAUD_CONV(2400);
BAUD_CONV(4800);
BAUD_CONV(9600);
BAUD_CONV(19200);
BAUD_CONV(38400);
BAUD_CONV(57600);
BAUD_CONV(115200);
BAUD_CONV(230400);
BAUD_CONV(460800);
BAUD_CONV(500000);
BAUD_CONV(576000);
BAUD_CONV(921600);
BAUD_CONV(1000000);
BAUD_CONV(1152000);
BAUD_CONV(1500000);
BAUD_CONV(2000000);
BAUD_CONV(2500000);
BAUD_CONV(3000000);
BAUD_CONV(3500000);
BAUD_CONV(4000000);
}
return -1;
}
}}} //end rp::arch::net
//begin rp::hal
namespace rp{ namespace hal{
serial_rxtx * serial_rxtx::CreateRxTx()
{
return new rp::arch::net::raw_serial();
}
void serial_rxtx::ReleaseRxTx(serial_rxtx *rxtx)
{
delete rxtx;
}
}} //end rp::hal